Polydatin Alleviates Lipopolysaccharide-Triggered Inflammatory Injury Through Up-Regulating miR-125b in Chondrogenic ATDC5 Cells

2019 ◽  
Vol 18 (1) ◽  
pp. 108-114
Author(s):  
Liu Haifeng ◽  
Zhang Fan ◽  
Wu Huiming ◽  
Wang Qinglai ◽  
Zhang Kuixian ◽  
...  

Osteoarthritis is a bone-joint disease prevalent in older people characterized by joint inflammation. In traditional Chinese medicine, polydatin plays an important anti-inflammatory role. This study analyzed the potential effects and possible internal mechanisms of polydatin on osteoarthritis. First, lipopolysaccharide-induced osteoarthritis injury was established in chondrogenic ATDC5 cells. Lipopolysaccharides significantly stimulated inflammatory injuries in ATDC5 cells as exemplified by a decrease in cell viability and an increase in inflammatory cytokine secretions including interleukin-6, tumor necrosis factor-a, and interleukin-1. Moreover, lipopolysacchrides also increased Cleaved caspase-3 and Cleaved Poly (ADP-ribose) polymerase to promote cell apoptosis. Second, polydatin showed significant protective effects against lipopolysaccharide-induced inflammatory injury, again exemplified by increased cell viability, decreased inflammatory cytokines, Cleaved caspase-3, and Cleaved poly (ADP-ribose) polymerase. Lastly, miR-125b and its binding target Rho-Associated Coiled-Coil Containing Protein Kinase 1 were closely associated with regulatory effects of polydatin against lipopolysaccharide-stimulated ATDC5 cell inflammatory injuries. Polydatin alleviated lipopolysaccharide-stimulated inflammatory injuries via the down-regulation of miR-125b. The present study concludes that polydatin plays an anti-inflammatory role in lipopolysaccharide-stimulated ATDC5 cell inflammatory injuries via the down-regulation of miR-125b.

2020 ◽  
Author(s):  
Jin Xu ◽  
Xiaozhong Qian ◽  
Ren Ding

Abstract Background: Osteoarthritis (OA) is a chronic and degenerative joint disease prevalent in the elderly. MiR-24-3p has been reported to be involved in an OA-resembling environment. However, the functional role and underlying mechanism of miR-24-3p in chondrocyte injury associated with OA remains unknown. Methods: The expression of miR-24-3p was determined in OA cases and control patients, as well as IL-1β-stimulated chondrocyte cell line CHON-001 using reverse transcription quantitative PCR analysis. Cell viability was analyzed by CCK-8 assay. Apoptosis status was assessed by caspase-3 activity detection. The pro-inflammatory cytokines (TNF-α and IL-18) were determined using ELISA assay. The association between miR-24-3p and BCL2L12 was confirmed by luciferase reporter assay.Results: We first observed that miR-24-3p expression level was lower in the OA cases than in the control patients and IL-1β decreased the expression of miR-24-3p in the chondrocyte CHON-001. Functionally, overexpression of miR-24-3p significantly attenuated IL-1β-induced chondrocyte injury, as reflected by increased cell viability, decreased caspase-3 activity, pro-inflammatory cytokines (TNF-α and IL-18). Western blot analysis showed that overexpression of miR-24-3p weakened IL-1β-induced cartilage degradation, as reflected by reduction of MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-5) protein expression, as well as markedly elevation of COL2A1 (collagen type II). Importantly, BCL2L12 was demonstrated to be a target of miR-24-3p. BCL2L12 knockdown imitated, while overexpression significantly abrogated the protective effects of miR-24-3p against IL-1β-induced chondrocyte injury.Conclusions: In conclusion, our work provides important insight into targeting miR-24-3p/BCL2L12 axis in OA therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Aijun Sun ◽  
Weiheng Wang ◽  
Xiaojian Ye ◽  
Yang Wang ◽  
Xiangqun Yang ◽  
...  

Objective. The aim of this research is to evaluate the protective effects of methane-rich saline (MS) on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) and investigate its potential antioxidative, anti-inflammatory, and antiapoptotic activities. Methods. LPS-induced (20 mg/kg) ALI rats were injected with MS (2 ml/kg and 20 ml/kg) before the initiation of LPS induction. Survival rate was determined until 96 h after LPS was induced. Lung injury was assayed by oxygenation index, lung permeability index (LPI), wet-to-dry weight (W/D), and histology. The cells in the bronchoalveolar lavage fluid (BALF) were counted. Oxidative stress was examined by the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in BALF were determined by ELISA. Lung tissue apoptosis was detected by TUNEL staining and western blotting of caspase-3. Results. It was found that methane significantly prolonged the rat survival, decreased the lung W/D ratio and the content of the inflammatory factors, and reduced the amount of caspase-3 and apoptotic index. In addition, MS increased the level of SOD and decreased the level of MDA significantly. Conclusions. MS protects the LPS-challenged ALI via antioxidative, anti-inflammatory, and antiapoptotic effect, which may prove to be a novel therapy for the clinical management of ALI.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1334.2-1335
Author(s):  
V. Can ◽  
I. Locke ◽  
P. Grieco ◽  
S. Getting

Background:Osteoarthritis (OA) is a degenerative joint disease that affects over 250 million people worldwide [1] with treatments focussing on the symptoms rather than the cause of the pathology [2, 3]. Thus, this degenerative joint disease requires novel treatment options [3, 4].Therefore, the melanocortin system [4] could provide a novel avenue to explore given its ability to exert anti-inflammatory effects and chondroprotection [5], although the receptor subtype involved is unclear.Objectives:This study aims to assess the chondroprotective and anti-inflammatory effects of the selective human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and the selective human MC3 receptor agonist PG-990 on S-Nitroso-N-acetyl-DL-penicillamine (SNAP) activated chondrocytes.Methods:The human chondrocytic cell-line C-20/A4 was seeded at 25.0 x 106viable cells/ml (5 μl droplet was transferred into individual wells of a 96-well plate). Micromass cultures [6] were stimulated with SNAP (1.0 mM) and after 2h treated with Dexamethasone (1.0 μM), selective human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride (10.0 μg/ml) or selective human melanocortin MC3 receptor agonist PG-990 (10.0 μg/ml) for 6h. Cell viability was determined by MTT assay, Caspase -3 and -7 activity determined by Caspase-Glo 3/7 apoptosis assay. Glycosaminoglycan (GAG) content determined by alcian blue staining and anti-inflammatory heme-oxygenase-1 (HO-1) protein expression was determined by western blot. Data are expressed as Mean ±S.E.M ofn=4 samples repeated in triplicate. #p≤0.05vscontrol or *p≤0.05vsstimulus.Results:Cell viability analysis showed SNAP stimulation caused a maximal cell death of 23% (#p≤0.05), Dexamethasone, BMS-470539 dihydrochloride and PG-990 inhibited cell death by 2%, 98% and 129% respectively (*p≤0.05). SNAP stimulation caused a significant increase in Caspase -3 and -7 activity, which was inhibited by Dexamethasone, BMS-470539 dihydrochloride and PG-990 by 8%, 5% and 19% respectively (*p≤0.05). GAG content was significantly reduced by SNAP by 29% (#p≤0.05), which was inhibited by Dexamethasone, BMS-470539 dihydrochloride and PG-990 by 1%, 3% and 14% respectively (*p≤0.05). SNAP also caused a significant decrease in HO-1 protein expression, which was increased by Dexamethasone, BMS-470539 dihydrochloride and PG-990 by a 1.0-fold, 1.1-fold and 2.1-fold increase respectively (*p≤0.05).Conclusion:The selective human melanocortin MC3 receptor agonist PG-990 exhibited enhanced chondroprotection and modulation of inflammatory and tissue destructive mediators following SNAP activation compared to Dexamethasone and the selective human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride. This suggests that melanocortin peptides display enhanced chondroprotective and anti-inflammatory effects at the MC3 receptor sub-type in this cell line.References:[1]Hunter DJ and Bierma-Zeinstra S. (2019).Lancet.393: 1745–59.[2]Can VCet al.(2020).Euro J Pharmacol. doi:https://doi.org/10.1016/j.ejphar.2020.172971.[3]Intekhab-Alam NYet al. (2013).Cell death & disease.4: 1-6.[4]Getting SJet al.(2006).Mol Pharmacol70: 1850-1855.[5]Kaneva MKet al.(2014).Biochem Pharmacol92: 336-47.[6]Greco KVet al.(2011).Biochem Pharmacol82: 1919-29.Disclosure of Interests:None declared


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Yue ◽  
Lei Zhao ◽  
Haixiao Liu ◽  
Xia Li ◽  
Bodong Wang ◽  
...  

Glutamate- (Glu-) induced excitotoxicity plays a critical role in stroke. This study aimed to investigate the effects of APN on Glu-induced injury in HT22 neurons. HT22 neurons were treated with Glu in the absence or the presence of an APN peptide. Cell viability was assessed using the MTT assay, while cell apoptosis was evaluated using TUNEL staining. Levels of LDH, MDA, SOD, and GSH-Px were detected using the respective kits, and ROS levels were detected using dichlorofluorescein diacetate. Western blot was used to detect the expression levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cleaved caspase-3, Bax, and Bcl-2. In addition to the western blot, immunofluorescence was used to investigate the expression levels of SIRT1 and PGC-1α. Our results suggest that APN peptide increased cell viability, SOD, and GSH-Px levels and decreased LDH release, ROS and MDA levels, and cell apoptosis. APN peptide upregulated the expression of SIRT1, PGC-1α, and Bcl-2 and downregulated the expression of cleaved caspase-3 and Bax. Furthermore, the protective effects of the APN peptide were abolished by SIRT1 siRNA. Our findings suggest that APN peptide protects HT22 neurons against Glu-induced injury by inhibiting neuronal apoptosis and activating SIRT1-dependent PGC-1αsignaling.


2020 ◽  
Author(s):  
Zheng Wang ◽  
Ping Zhang ◽  
Qingqing Wang ◽  
Xueping Sheng ◽  
Jianbing Zhang ◽  
...  

Abstract Background: Liver ischemia-reperfusion (I/R) injury is an inevitable pathological phenomenon in various clinical conditions, such as liver transplantation, resection surgery, or shock, which is the major cause of morbidity and mortality after operation. Ginkgo Biloba Dropping Pill (GBDP) is a unique Chinese Ginkgo Biloba leaf extract preparation that exhibits a variety of beneficial biological activities. The aim of this study is to investigate the protective effects of GBDP on the liver I/R injury both in vitro and in vivo. Methods: Hypoxia/reoxygenation (H/R) experiments were performed in AML-12 cells and primary hepatocytes, which were pretreated with GBDP (60 or 120 μg/mL) followed by incubation in a hypoxia chamber. Cell viability and cell apoptosis were detected by MTT assay and annexin V staining respectively. C57BL/6 mice were used to establish liver I/R injury model, and were pretreated with GBDP (100 or 200 mg/kg/day, i.g.) for two weeks. Liver damage was detected by plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Liver necrosis and neutrophil infiltration were determined by H&E and myeloperoxidase immunohistochemistry staining. Finally, TUNEL staining and western blot analysis of apoptosis-related proteins were used to investigate the anti-apoptotic effect of GBDP. Results: In the in vitro study, GBDP pretreatment improved the cell viability of AML-12 cells in H/R injury model. Similarly, the same result was found in the primary hepatocytes isolated from C57BL/6 mice. Moreover, GBDP decreased the number of apoptotic cells induced by H/R. In the in vivo study, oral administration of GBDP ameliorated liver injury evidenced by a significant decline in the levels of ALT and AST. Furthermore, the result of H&E staining showed that GBDP reduced the size of necrosis area. In addition, the decreased infiltration of neutrophils indicated that GBDP may play an anti-inflammatory effect. More importantly, GBDP reduced TUNEL-positive cells and the expression of Bax and caspase-3 in liver indicating GBDP has anti-apoptotic effects.Conclusion: Our findings elucidated that GBDP has potential effects for protecting against liver I/R injury characterized by its anti-apoptotic, anti-necrotic, and anti-inflammatory properties, which would promisingly make a contribution to the exploration of therapeutic strategies in the liver I/R injury.


2021 ◽  
Author(s):  
Mohammad Amin Mombeini ◽  
Hadi Kalantar ◽  
Elahe Sadeghi ◽  
Mehdi Goudarzi ◽  
Hamidreza Khalili ◽  
...  

Abstract Purpose Cyclophosphamide is an alkylating agent with nephrotoxicity that constraints its clinical application. Berberine is an isoquinoline derivative alkaloid with biological functions like antioxidant and anti-inflammatory. The current research intended to examine the nephroprotective impacts of berberine against cyclophosphamide-stimulated nephrotoxicity. Methods Forty animal subjects were randomly separated into five categories of control (Group I). Cyclophosphamide (200 mg/kg, i.p., on 7th day) (Group II), and groups III and IV that received berberine 50 and 100 mg/kg orally for seven days and a single injection of cyclophosphamide on 7th day. Group V as berberine (100 mg/kg, alone). On day 8, blood samples were drawn from the retro-orbital sinus to determine serum levels of blood urea nitrogen (BUN), creatinine (Cr), Neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) as biomarkers for kidney injury. Nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities as oxidative stress factors, tumor necrosis factor- α (TNF-α) and interleukin 1 beta (IL-1β) levels as inflammatory mediators were assessed in kidney tissue. Results The results of this study demonstrated that berberine was able to protect remarkably the kidney from CP-induced injury through decreasing the level of BUN, Cr, NGAL, KIM-1, NO, MDA TNF-α, IL-1β and increasing the level of GSH, CAT, SOD and GPx activities. Conclusion Berberine may be employed as a natural agent to prevent cyclophosphamide-induced nephrotoxicity through anti-oxidant and anti-inflammatory effects.


2015 ◽  
Vol 51 (1) ◽  
pp. 127-141
Author(s):  
Ming-Ming Yang ◽  
Wei Huang ◽  
Dian-Ming Jiang

Tetramethylpyrazine (TMP), a major active ingredient of Ligusticum wallichi Franchat extract (a Chinese herb), exhibits neuroprotective properties in ischemia. In this study, we assessed its protective effects on Schwann cells (SCs) by culturing them in the presence of oxygen glucose deprivation (OGD) conditions and measuring cell survival in cold ischemic rat nerves. In the OGD-induced ischemic injury model of SCs, we demonstrated that TMP treatment not only reduced OGD-induced cell viability losses, cell death, and apoptosis of SCs in a dose-dependent manner, and inhibited LDH release, but also suppressed OGD-induced downregulation of Bcl-2 and upregulation of Bax and caspase-3, as well as inhibited the consequent activation of caspase-3. In the cold ischemic nerve model, we found that prolonged cold ischemic exposure for four weeks was markedly associated with the absence of SCs, a decrease in cell viability, and apoptosis in preserved nerve segments incubated in University of Wisconsin solution (UWS) alone. However, TMP attenuated nerve segment damage by preserving SCs and antagonizing the decrease in nerve fiber viability and increase in TUNEL-positive cells in a dose-dependent manner. Collectively, our results indicate that TMP not only provides protective effects in an ischemia-like injury model of cultured rat SCs by regulating Bcl-2, Bax, and caspase-3, but also increases cell survival and suppresses apoptosis in the cold ischemic nerve model after prolonged ischemic exposure for four weeks. Therefore, TMP may be a novel and effective therapeutic strategy for preventing peripheral nervous system ischemic diseases and improving peripheral nerve storage.


1992 ◽  
Vol 102 (4) ◽  
pp. 1176-1185 ◽  
Author(s):  
John L. Wallace ◽  
Catherine M. Keenan ◽  
Mercedes Cucala ◽  
Kenneth G. Mugridge ◽  
Luca Parente

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 961
Author(s):  
Alma Martelli ◽  
Eugenia Piragine ◽  
Era Gorica ◽  
Valentina Citi ◽  
Lara Testai ◽  
...  

Preservation of vascular wall integrity against degenerative processes associated with ageing, fat-rich diet and metabolic diseases is a timely therapeutical challenge. The loss of endothelial function and integrity leads to cardiovascular diseases and multiorgan inflammation. The protective effects of the H2S-donor erucin, an isothiocyanate purified by Eruca sativa Mill. seeds, were evaluated on human endothelial and vascular smooth muscle cells. In particular, erucin actions were evaluated on cell viability, ROS, caspase 3/7, inflammatory markers levels and the endothelial hyperpermeability in an inflammatory model associated with high glucose concentrations (25 mM, HG). Erucin significantly prevented the HG-induced decrease in cell viability as well as the increase in ROS, caspase 3/7 activation, and TNF-α and IL-6 levels. Similarly, erucin suppressed COX-2 and NF-κB upregulation associated with HG exposure. Erucin also caused a significant inhibition of p22phox subunit expression in endothelial cells. In addition, erucin significantly prevented the HG-induced increase in endothelial permeability as also confirmed by the quantification of the specific markers VE-Cadherin and ZO-1. In conclusion, our results assess anti-inflammatory and antioxidant effects by erucin in vascular cells undergoing HG-induced inflammation and this protection parallels the preservation of endothelial barrier properties.


Sign in / Sign up

Export Citation Format

Share Document