Applications of Nanoemulsion for the Wound-Healing Process

2022 ◽  
pp. 466-493
Author(s):  
S. M. Shaheedha

Attention to nanoemulsions has significantly grown in recent years as a result of their unique features like better stability, special appearance, higher performance, and sensorial merits. Chronic injuries are the consequence of a disturbance in the extremely coordinated cataract of wound healing actions. Nevertheless, correlated with variations in the timescales of various physical methods embroiled in tissue renewal, the aggression of the tumor microenvironment, rich in decaying enzymes, as well as its increased pH, demands the use of efficient drug delivery applications. This chapter summarizes that the various stages of wound healing include four phases: hemostatic stage, inflammation, proliferation, and remodeling process, respectively. Moreover, the major reported classes of lipid-based elements were either vesicular (liposome, permeation increased vesicle, etc.), emulsion-based behavior (nano-emulsion and micro-emulsion), or comprise a solid-based liquid matrix in the wound-healing process.

2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ajay Singh ◽  
Zeba Maqsood ◽  
Mohammad Kashif Iqubal ◽  
Javed Ali ◽  
Sanjula Baboota

: Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.


2021 ◽  
Vol 22 (3) ◽  
pp. 1408
Author(s):  
Luis Castillo-Henríquez ◽  
Jose Castro-Alpízar ◽  
Mary Lopretti-Correa ◽  
José Vega-Baudrit

Innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials possess 3D architectures similar to human structures, providing physical support for cell growth and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems. Locally heated tumors above the polymer lower the critical solution temperature and can induce its conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result, these systems can contribute to the wound healing process in accelerating tissue healing, avoiding large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present a comprehensive review that aims to demonstrate these systems’ capacity to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to patient convenience and reduce drug toxicity and side effects.


2021 ◽  
Vol 11 (17) ◽  
pp. 7776
Author(s):  
Sara Moradi ◽  
Hamid Hamedi ◽  
Alan E. Tonelli ◽  
Martin W. King

The healing of wounds is still a challenging clinical problem for which an efficient and fast treatment is needed. Therefore, recent studies have created a new generation of wound dressings that can accelerate the wound healing process with minimal side effects. Chitosan, a natural biopolymer, is an attractive candidate for preparing biocompatible dressings. The biodegradability, non-toxicity, and antibacterial activities of chitosan have made it a promising biopolymer for treating wounds. Graphene oxide has also been considered by researchers as a non-toxic, inexpensive, and biocompatible material for wound healing applications. This review paper discusses the potential use of chitosan/graphene oxide composite films and their application in wound dressing and drug delivery systems.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1061 ◽  
Author(s):  
Khaled M. Hosny ◽  
Nabil A. Alhakamy ◽  
Amal M. Sindi ◽  
Rasha A. Khallaf

Burn wound healing is a complex process that involves the repair of injured tissues and the control of infection to diminish the scar formation, pain, and discomfort associated with such injuries. The aim of this research was to formulate and optimize a self-nanoemulsion drug delivery system based on the use of coconut oil and loaded with simvastatin. Coconut oil possesses antiinflammatory and antibacterial activity, and simvastatin has interesting properties for promoting the wound-healing process because it increases the production of the vascular endothelial growth factor at the site of injury. The Box–Behnken design was employed for the optimization of the coconut oil–simvastatin self-nanoemulsion drug delivery system. The prepared formulations were characterized according to globular size and their activity in the healing of burn wounds by assessing the mean wound diameter and level of interlukin-6 in experimental animals. Additionally, the antimicrobial activity of the prepared formulations was assessed. The nanoemulsion was considered adequately formed when it had droplets of between 65 and 195 nm. The statistical design proved the important synergistic effect of coconut oil and simvastatin for burn wound management in their synergistic potentiation of wound closure and their anti-inflammatory and antimicrobial effects. The optimum formulation achieved up to a 5.3-fold decrease in the mean burn wound diameter, a 4.25-fold decrease in interleukin-6 levels, and a 6-fold increase in the inhibition zone against Staphylococcus aureus when compared with different control formulations. Therefore, the designed nanoemulsions containing a combination of coconut oil and simvastatin could be considered promising platforms for the treatment of chronic and burn wounds.


2020 ◽  
Vol 10 (5-s) ◽  
pp. 281-289
Author(s):  
Lalita Chauhan ◽  
Shalini Gupta

Creams are considered an important part of cosmetic product as topical preparations from time immemorial due to their ease of application to the skin and also their removal. From cosmetic purposes, Pharmaceutical creams have a variety of applications such as cleansing, beautifying, altering appearance, moisturizing etc. to skin protection against bacterial, fungal infections as well as healing cuts, burns, wounds on the skin. These semi solid preparations are safe to use by the public and society. The human skin is easily vulnerable to injury but it has the capability to heal on its own. However, the natural healing process can take time and there is also risk of infection especially in the early stages of injury. In such cases, medicated creams can be applied to the site of injury to speed up the healing process as well as protect the wound from infection. In this review, we have focused on the use of topical drug delivery system i.e. pharmaceutical creams for wound healing with detailed discussion relating to the wound healing process, suitable methods of preparation of creams, their classification based on their function, their advantages and disadvantages, characteristics and the various types of creams, ingredients used in the formulation of creams and their various evaluation parameters. Keywords: Creams, Skin, Topical drug delivery system, Wound healing


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Sadia Hassan ◽  
Murtaza Najabat Ali ◽  
Mariam Mir ◽  
Ammad Ahmed ◽  
Munam Arshad

AbstractWound treatment remains a challenge to many clinicians because of the complexities of the wound healing process. With the astonishing progress of biomedical engineering during the past few decades, conventional drug delivery systems have been evolved into smart drug delivery systems with stimuli-responsive characteristics. The objective of this study was to develop and evaluate an electromechanically actuated drug dispensation device which can release active pharmaceutical compound in a controlled fashion. Additive manufacturing was employed to design and fabricate the device. Haptic technology was used to provide stimulation for drug release, and Cicatrin was used to evaluate the drug release patterns of device. Drug release study was comprised of in vitro drug release, static study, and the purpose of this study was to develop a compliance chart for different wound conditions. The effectiveness of shortlisted drug regimen from compliance chart was validated through microbial study and animal studies. The results of animal studies were compared with commercially available drug release systems. The results of drug release studies gave different dose regimens for different wound conditions. The effective dose regimen was able to create 1-cm-wide microbial zone of inhibitions. The wound healing rate of mice for commercially available release system for five consecutive days was 10%, 10%, 20%, 40% and 50% and for test device was 10%, 30%, 60%, 90% and 100%. Hence, the device proved its effectiveness and efficacy of dosage regimen for wound healing applications through in vitro, microbial and in vivo studies. In conclusion, this device proved to be an accurate and specific drug delivery system with improved medication and therapeutic outcomes for personalized medication.


2019 ◽  
Vol 2 (1) ◽  
pp. 14-17
Author(s):  
Nurul Aini Siagian ◽  
Syafira Nusaibah ◽  
Andayani Boang Manalu

Early mobilization includes factors that can affect the process of wound healing after surgery. Immediate mobilization in stages is very useful for the process of healing wounds and preventing infection and venous thrombosis. The purpose of this study was to determine whether there is a relationship between early mobilization and the process of healing wound post operative sectio caesarea at Sinar Husni General Hospital Medan Helvetia. The research design used was analytic survey with cross sectional approach. The sample in this study used the Consecutive Sampling method of data collection using a checklist sheet conducted on a sample of 19 respondents. The results of the study in this study are the majority of respondents who did early mobilization and who experienced rapid wound healing process as many as 4 people (21%) while the minority of respondents who did early mobilization and who experienced slow wound healing process were 1 person (5.3%). The majority of respondents who did not mobilize early and who experienced a slow wound healing process were 11 people (57.9%) and a minority who did not mobilize early and who experienced rapid healing as many as 4 people (21.1%). Statistical test results obtained p value = 0.046 <0.005. The conclusions of the results of this study indicate there is a relationship between early mobilization and the process of healing post operative sectio of caesarea. Suggestions The results of this study can be applied as a reference to improve nursing care services, especially in providing counseling and assistance to patients.


Author(s):  
L H Baldaniya ◽  
Sarkhejiya N A

Hydrogels are the material of choice for many applications in regenerative medicine due to their unique properties including biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics. Hydrogel (also called Aquagel) is a network of polymer chains that are hydrophilic, sometimes found as a colloidal gel in which water is the dispersion medium. Hydrogels are highly absorbent (contain ~99.9% water), natural or synthetic polymers. Hydrogel also possess a degree of flexibility very similar to natural tissue, due to its significant water content. It can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures. Also serve as adhesives or barriers between tissue and material surfaces. The positive effect of hydrogels on wounds and enhanced wound healing process has been proven. Hydrogels provide a warm, moist environment for wound that makes it heal faster in addition to its useful mucoadhesive properties. Moreover, hydrogels can be used as carriers for liposomes containing variety of drugs, such as antimicrobial drugs. Hydrogels are water swollen polymer matrices, with a tendency to imbibe water when placed in aqueous environment. This ability to swell, under biological conditions, makes it an ideal material for use in drug delivery and immobilization of proteins, peptides, and other biological compounds. Hydrogels have been extensively investigated for use as constructs to engineer tissues in vitro. This review describes the properties, classification, preparation methods, applications, various monomer used in formulation and development of hydrogel products.


2017 ◽  
Vol 2 (1) ◽  
pp. 20-28
Author(s):  
Fitriani ◽  
Tenriwati

At present, the incidence of injuries in Indonesia is quite high, as seen from data on traffic accidents in the general public. There are several factors that affect wound healing, one of which is nutritional status. Based on the preliminary data retrieval conducted by researchers in the seruni surgery room in the last 1 month namely in March, it was found that the number of wounded patients was 109 patients, where the number of men was 78 (71.56%) while the number of women was 31 ( 28.44%) The purpose of this study was to determine the relationship between nutritional status and the wound healing process in RSUD. H. Andi. Sulthan Daeng Radja Kab. Bulukumba. This research uses the type of design of this research is quantitative research. This type of research uses analytic observational research with cross sectional approach. The sample of this study were 41 respondents taken by purposive sampling method. Data analysis in this study used the chi-square test (chi square test). The results of the analysis used the chi-square statistical test with a confidence level (α = 0.05). Based on the results of this test, the p value is 0.001, thus p <α (0.001 <0.05), then Ho is rejected and Ha is accepted. The conclusion of this study is that there is a relationship between nutritional status and the process of wound healing in RSUD. H. Andi. Sulthan Daeng Radja Kab. Bulukumba. Researchers suggest that this study be used as a material consideration in the fulfillment of nutrition in wound care patients in RSUD.H.A. Sulthan Daeng Radja Kab. Bulukumba and this research can be continued by conducting research related to the wound healing process and linking it with other variables.


Sign in / Sign up

Export Citation Format

Share Document