Fabrication of Al-Sn Composites from Direct Recycling Aluminium Alloy 6061

2013 ◽  
Vol 465-466 ◽  
pp. 1003-1007
Author(s):  
Nur Azam Badarulzaman ◽  
Siti Rodiah Karim ◽  
Mohd Amri Lajis

Solid-state direct conversion method of recycled aluminium 6061 alloy to produce metal-metal composites was studied by using collected recycle chip. Different volume percent of stannum (Sn) matrix was studied to attempt the tensile strength and surface integrity of the aluminium composites product. Constant pressure was used to implement the cold forging process with constant sintering temperature. Single size of chip had been used which 2 mm length as suggested. The optimum result of yield strength and ultimate tensile strength is 3 Pa and 8.3 Pa for 20 vol% of Sn composition. Analysis shows that composites beyond 20 vol% Sn resulted in the tensile strength decreased.

2015 ◽  
Vol 1087 ◽  
pp. 420-423
Author(s):  
Marwan Zakaria ◽  
Siti Rodiah Karim ◽  
Nur Azam Badarulzaman

This paper focused on fabrication of Al-6vol%SnPb from recycled Aluminium and recycled solder and its characterization in different sintering temperature. Al-20SnPb was fabricated by using cold forging process of flakes chip raw materials. Constant pressure (56.4 MPa) was used to implement cold forging process. Various sintering temperature (200 0C, 250 0C, 300 0C and 3500C) was studied to obtain the optimum hardness properties. The diffraction pattern of X-Ray diffraction (XRD) reveals the influence of varying sintering temperature of Al-6vol%SnPb. Vickers hardness result also support that, optimum result obtained is at sintering temperature 300 °C.


2012 ◽  
Vol 217-219 ◽  
pp. 483-486
Author(s):  
Mei Yuan Ke

Effects of Sintering atmosphere and temperature on properties of warm compacted 410L stainless steel powder were studied. Sintered density, hardness, tensile strength and elongation were measured. Results showed that in order to achieve high comprehensive properties, the optimal sintering temperature was 1230°C for 410L stainless steel powder. At the same sintering temperature, density and hardness sintered in vacuum were much higher than that sintered in cracked ammonia while tensile strength sintered in cracked ammonia were much higher than that in vacuum. When sintered in vacuum at 1230°C, sintered density was 7.45 g•cm-3, hardness was 65 HRB, tensile strength was 410 MPa and elongation was 29.5%. When sintered in cracked ammonia atmosphere at 1230°C, sintered density was 7.26 g•cm-3, hardness was 97 HRB, tensile strength was 515 MPa and elongation was 3.8%.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
C K Krishnadasan ◽  
G Radhakrishnan ◽  
Manu Thomas

This work mainly focuses on designing a novel aluminum alloy 6061-T6 pressure vessel liner intended for use in launch vehicles. Fabrication of custom-made welding fixtures for the assembly of liner parts, namely two hemispherical domes and end boss, is illustrated. The parts of the liner are joined using the cold metal transfer welding process, and the welding trials are performed to arrive at an optimized parametric range. The metallurgical characterization of weld joint reveals the existence of dendritic structures (equiaxed and columnar). Microhardness of base and weld metal was 70 and 65 HV, respectively. The tensile strength of base and weld metal was 290 and 197 MPa, respectively, yielding a joint efficiency of 68%. Finite-element analysis of a uniaxial tensile test was performed to predict the tensile strength and location of the fracture in base and weld metal. The experimental and predicted tensile test results were found to be in good agreement.


REAKTOR ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 151 ◽  
Author(s):  
Silviana Silviana ◽  
Puji Rahayu

Sago starch based bioplastics as food packaging have drawbacks such as soft, and easily broken. This paper explains improvement of sago starch-based bioplastics reinforced with bamboo microfibrillated cellulose (MFC). Furthermore, this paper investigates effect of dispersing agent on mechanical property by using of potassium chloride (KCl) assisted by ultrasonic homogenizer. Variable used experiments were bamboo MFC concentration of 1%; 3% and 5% w/w and KCl concentration of 1%; 2% dan 3% w/v. Sago starch-based solution was prepared from 4% w/v of commercial sago starch. The mixed solution was gelatinized at temperature of 90 oC. The result showed that the 5% of bamboo MFC increased tensile strength of sago starch-based bioplastics due to purpose of bamboo MFC as reinforcement of sago starch. Further, additional of KCl reduced the dispersing time for 1 hour. Optimum result in this preliminary experiment was obtained at bamboo MFC of 5% w/w and KCl concentration of 1% w/v resulting tensile strength of 17.99 MPa.


2019 ◽  
Vol 813 ◽  
pp. 404-410
Author(s):  
Hardik Vyas ◽  
Kush P. Mehta

In the present investigation, friction stir processing (FSP) is carried out with multi pass processing having 100 % overlap zone on the workpiece material of aluminum alloy 6061 with constant FSP parameters and varying multi pass processing conditions. Novel processing concept of multi pass FSP was performed with different rotation directions (such as clock wise and anti-clock wise directions) and processing directions (such as forward, reverse and revert directions). Surface inspection, macrographs and microstructures of the processed regions are evaluated and compared with each other. Multi-pass FSP with 100 % overlapping of two passes caused intense dynamic recrystallization and resulted in reduced grain size. Hardness of processed zone was found increased in case of two pass FSP. Minimum tensile strength was reported with double sided FSP compare to single pass and two pass FSPs. No major variations in tensile strength were reported in case of single pass and two pass FSPs.


2020 ◽  
Vol 975 ◽  
pp. 229-234
Author(s):  
Mohammed H. Rady ◽  
Mohammad Sukri Mustapa ◽  
Shazarel Shamsudin ◽  
Mohd Amri Lajis ◽  
Mohd Idrus Mohd Masirin ◽  
...  

Produced Profiles by direct recycling of aluminum chips in hot extrusion process were achieved by temperature related parameters using preheating temperature 450 °C, 500 °C, and 550 °C for duration 1 hour, 2 hours, and 3 hours preheating time. By using Design of Experiments (DOE) procedure with full factorial design and three center points analysis, the results showed that the preheating temperature factor is more important to be controlled rather than the preheating duration and increase of temperature conducted to the high tensile strength. The profiles extruded at 550 °C and 3 hours’ duration had obtained the optimum condition to get the maximum tensile strength. The influence of parameters of hot extrusion process on fracture surfaces of the recycled samples was also investigated and discussed.


Author(s):  
Gurminder Singh ◽  
Pulak M Pandey

In the present paper, mechanical and thermal properties of rapidly manufactured copper parts were studied. The combination of three-dimensional printing and ultrasonic assisted pressureless sintering was used to fabricate copper parts. First, the ultimate tensile strength and thermal conductivity were compared between ultrasonic assisted and conventional pressureless sintered samples. The homogenously mixing of particles and local heat generation by ultrasonic vibrations promoted the sintering driving process and resulted in better mechanical and thermal properties. Furthermore, response surface methodology was adopted for the comprehensive study of the ultrasonic sintering parameters (sintering temperature, heating rate, and soaking time with ultrasonic vibrations) on ultimate tensile strength and thermal conductivity of the fabricated sample. Analysis of variance was performed to identify the significant factors and interactions. The image processing method was used to identify the surface porosity at different parameter levels to analyse the experimental results. High ultimate tensile strength was obtained at high sintering temperature, long soaking time, and slow heating rate with low surface porosity. After 60 min of soaking time, no significant effect was observed on the thermal conductivity of the fabricated sample. The significant interactions revealed less effect of soaking time at low sintering temperatures for ultimate tensile strength and less effect of heating rate at low sintering temperatures for thermal conductivity. Multi-objective optimization was carried out to identify parameters for maximum ultimate tensile strength and maximum thermal conductivity.


2012 ◽  
Vol 584 ◽  
pp. 239-242
Author(s):  
C. Seshendra Reddy ◽  
A. Sivasankar Reddy ◽  
P. Sreedhara Reddy

La0.67Ba0.33MnO3 powders were successfully prepared by a standard solid state reaction method, and systematically investigated the influence of the sintering temperature on the structural, microstructure, composition properties. The XRD pattern showed that the as prepared LBMO material was in single-phase with rhombohedral structure. From the scanning electron micrographs, it was observed that the grain size increased with sintering temperature and the average grain size was ~40nm.The surface roughness was measured by atomic force microscope and the RMS roughness of samples was in the range 48 to 85 nm. The as prepared samples exhibited nearly the same composition of the base material.


2012 ◽  
Vol 430-432 ◽  
pp. 909-912
Author(s):  
Zhao Wang ◽  
De Hong Lu ◽  
Hui Gong ◽  
Xiao Gang He

Aiming to improve the crack-resistance of the mould of ceramic mould casting, glass fibers whose average diameter was approximately 16 µm, length 1mm were dispersed, and the effect of the glass fibers on the tensile strength and shrinkage rate of the ceramic mould was investigated in this study. In the ceramic green body, quartz sand was selected as refractory, silica sol was binder. The results show that, with increasing glass fiber, the tensile strength of the ceramic mould increased linearly from 0.175 MPa to 0.221 MPa at the same sintering temperature, and the shrinkage rate fell from 1.37% to 1.33% at room temperature. With the sintering temperature rising, the tensile strength increased and the shrinkage decreased by the glass fiber dispersion, but their variation rule were not changed. The investigation proposed a new method to improve the crack-resistance of the ceramic mould, i.e., glass fiber dispersion into the ceramic mould.


Sign in / Sign up

Export Citation Format

Share Document