Pore Size Dependence of Compressive Behavior and Energy Absorption Properties of Porous Copper

2012 ◽  
Vol 560-561 ◽  
pp. 1005-1010
Author(s):  
Gang Ling Hao ◽  
Qiao Ping Xu ◽  
Fu Sheng Han

Porous copper with an open-cellular structure was prepared basing on space-holder method. Depending on the volume fraction and size of the space holding particle, the porosity can be varied in a wide range of 40-85%, and the pore size can be tailored from micron to millimeter in order. The effects of pore size on compressive behavior and energy absorption properties were investigated by quasi-static compression measurement. The results showed that the pore size shows a significant effect on compressive behavior and energy absorption properties. The compressive stress-strain curves were increased with increasing the pore size. The energy absorption capacity and energy absorption efficiency were greatly improved at the same strain, when the pore sizes transferred from micron to millimeter in order, indicating a more desirable energy absorption property of larger pore size.

2019 ◽  
Vol 37 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Jian Chen ◽  
Xiongfei Li ◽  
Wei Li ◽  
Cong Li ◽  
Baoshan Xie ◽  
...  

AbstractQuasi-static uniaxial compressive tests of open-cell copper (Cu) foams (OCCF) were carried out on an in-situ bi-direction tension/compress testing machine (IBTC 2000). The effects of strain rate, porosity and pore size on the energy absorption of open-cell copper foams were investigated to reveal the energy absorption mechanism. The results show that three performance parameters of open-cell copper foams (OCCF), involving compressive strength, Young modulus and yield stress, increase simultaneously with an increase of strain rate and reduce with increasing porosity and pore size. Furthermore, the energy absorption capacity of OCCF increases with an increase of porosity and pore size. However, energy absorption efficiency increases with increasing porosity and decreasing pore size. The finite element simulation results show that the two-dimensional stochastic model can predict the energy absorption performance of the foam during the compressive process. The large permanent plastic deformation at the weak edge hole is the main factor that affects the energy absorption.


2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


Author(s):  
Ramin Hamzehei ◽  
Ali Zolfagharian ◽  
Soheil Dariushi ◽  
Mahdi Bodaghi

Abstract This study aims at introducing a number of two-dimensional (2D) re-entrant based zero Poisson’s ratio (ZPR) graded metamaterials for energy absorption applications. The metamaterials’ designs are inspired by the 2D image of a DNA molecule. This inspiration indicates how a re-entrant unit cell must be patterned along with the two orthogonal directions to obtain a ZPR behavior. Also, how much metamaterials’ energy absorption capacity can be enhanced by taking slots and horizontal beams into account with the inspiration of the DNA molecule’s base pairs. The ZPR metamaterials comprise multi-stiffness unit cells, so-called soft and stiff re-entrant unit cells. The variability in unit cells’ stiffness is caused by the specific design of the unit cells. A finite element analysis (FEA) is employed to simulate the deformation patterns of the ZPRs. Following that, meta-structures are fabricated with 3D printing of TPU as hyperelastic materials to validate the FEA results. A good correlation is observed between FEA and experimental results. The experimental and numerical results show that due to the presence of multi-stiffness re-entrant unit cells, the deformation mechanisms and the unit cells’ densifications are adjustable under quasi-static compression. Also, the structure designed based on the DNA molecule’s base pairs, so-called structure F''', exhibits the highest energy absorption capacity. Apart from the diversity in metamaterial unit cells’ designs, the effect of multi-thickness cell walls is also evaluated. The results show that the diversity in cell wall thicknesses leads to boosting the energy absorption capacity. In this regard, the energy absorption capacity of structure ‘E’ enhances by up to 33% than that of its counterpart with constant cell wall thicknesses. Finally, a comparison in terms of energy absorption capacity and stability between the newly designed ZPRs, traditional ZPRs, and auxetic metamaterial is performed, approving the superiority of the newly designed ZPR metamaterials over both traditional ZPRs and auxetic metamaterials.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1579 ◽  
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Ganfeng Tu ◽  
Yongliang Mu

The energy absorption of different cell structures for closed-cell aluminum foam-filled Al tubes are investigated through quasi-static compression testing. Aluminum foams are fabricated under different pressures, obtaining aluminum foams with different cell sizes. It is found that the deformation of the foam core is close to the overall deformation, and the deformation band is seriously expanded when the cell size is fined, which leads to the increase of interaction. Results confirm that the foam-filled tubes absorb more energy due to the increase of interaction between the foam core and tube wall when the foaming pressure increases. The energy absorption efficiency of foam-filled tubes can reach a maximum value of 90% when the foam core is fabricated under 0.30 MPa, which demonstrates that aluminum foams fabricated under increased pressure give a new way for the applications of foam-filled tubes in the automotive industry.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3335 ◽  
Author(s):  
Seungwon Kim ◽  
Dong Joo Kim ◽  
Sung-Wook Kim ◽  
Cheolwoo Park

Concrete has high compressive strength, but low tensile strength, bending strength, toughness, low resistance to cracking, and brittle fracture characteristics. To overcome these problems, fiber-reinforced concrete, in which the strength of concrete is improved by inserting fibers, is being used. Recently, high-performance fiber-reinforced cementitious composites (HPFRCCs) have been extensively researched. The disadvantages of conventional concrete such as low tensile stress, strain capacity, and energy absorption capacity, have been overcome using HPFRCCs, but they have a weakness in that the fiber reinforcement has only 2% fiber volume fraction. In this study, slurry infiltrated fiber reinforced cementitious composites (SIFRCCs), which can maximize the fiber volume fraction (up to 8%), was developed, and an experimental study on the tensile behavior of SIFRCCs with varying fiber volume fractions (4%, 5%, and 6%) was carried out through direct tensile tests. The results showed that the specimen with high fiber volume fraction exhibited high direct tensile strength and improved brittleness. As per the results, the direct tensile strength is approximately 15.5 MPa, and the energy absorption capacity was excellent. Furthermore, the bridging effect of steel fibers induced strain hardening behavior and multiple cracks, which increased the direct tensile strength and energy absorption capacity.


2019 ◽  
Vol 54 (3) ◽  
pp. 176-191 ◽  
Author(s):  
Yanfeng Guo ◽  
Meijuan Ji ◽  
Yungang Fu ◽  
Dan Pan ◽  
Xingning Wang ◽  
...  

The composite layered structures including paper corrugation, paper honeycomb and expandable polyethylene are innovative structures of cushioning energy absorption, and the compression and impact resistances of the expandable polyethylene can be enhanced by laminating the corrugated paperboard or honeycomb paperboard. This article evaluated the compression performance and cushioning energy absorption of the composite layered structures by the static compression and drop impact compression tests. On one hand, the static compression properties showed that the total energy absorption, energy absorption per unit volume and stroke efficiency of the composite layered structures were all higher than those of expandable polyethylene. The specific energy absorption was enhanced with the increase in compression strain but almost not affected by the compression rate. The specific energy absorption of the composite layered structures including the expandable polyethylene and honeycomb paperboard was greater than those of the expandable polyethylene and corrugated paperboard. The energy absorption efficiency of the composite layered structures including the expandable polyethylene and corrugated paperboard was large for the low compression stress level, yet that of the composite layered structures including the expandable polyethylene and honeycomb paperboard was large for the high compression stress level. On the other hand, the dynamic compression characteristics showed that the peak stress, energy absorption per unit area, energy absorption per unit volume and specific energy absorption of the composite layered structures embodying paper sandwich cores and expandable polyethylene had linear increasing trends with the increase of drop shock energy. At the same drop impact condition, the composite layered structures including the honeycomb paperboard and expandable polyethylene had better cushioning energy absorption, the peak stress decreased by 23.6% on average, the energy absorption efficiency raised by 8.85% on average and the specific energy absorption increased by 18.1% on average than those including the corrugated paperboard and expandable polyethylene. Therefore, the corrugated paperboard and honeycomb paperboard can helpfully improve the cushioning energy absorption of the expandable polyethylene, and the composite layered structures embodying the expandable polyethylene, corrugated paperboard and honeycomb paperboard may hold excellent packaging protection.


2011 ◽  
Vol 250-253 ◽  
pp. 3-9 ◽  
Author(s):  
Wei Zhou Zhong ◽  
Xi Cheng Huang ◽  
Zhi Ming Hao ◽  
Ruo Ze Xie ◽  
Gang Chen

The curves of stress versus strain along spruce wood axial, radial and tangential directions are gained by static compression experiments. Moisture content and density of the spruce wood are 12.72% and 413 kg/m3respectively. The results indicate that spruce compression process includes elastic, yield and compaction phases. Failure modes of spruce subjected to axial compression are fiber buckling and wrinkle. And failure modes under radial or tangential compression are wood fiber slippage and delamination. Axial compression yield strength is about nine times as that of radial and tangential compression. Radial and tangential compression yield strengths are almost equal. Energy absorption efficiency and ideality energy absorption efficiency of spruce along different loading directions are analyzed. And theory analytic solution to single wood cell buckling under axial compression is done. The obtained expression shows that the mean limit loading is relative to yield stress, cell structure dimension and wrinkle length for complete wrinkle cases.


2018 ◽  
Vol 49 (10) ◽  
pp. 1389-1410 ◽  
Author(s):  
Mohsen Hamedi ◽  
Parisa Salimi ◽  
Nima Jamshidi

Cushioning pads alleviate the effects of mechanical stress on the human body due to impacts and daily activities. One relevant application for such pads is orthopedic insoles used for diabetic foot to improve energy absorption and reduce stress gradient by using suitable materials and structures. This article considers a novel design that improves the energy absorption capabilities of cushioning pads. Experiments were conducted to evaluate the properties of the designed weft knitted spacer fabrics. Six groups of samples were knitted in which steel, polyamide, and shape memory alloy materials were utilized as spacer monofilament. Stress–strain, energy absorption and efficiency diagrams were obtained following the quasi-static compression tests carried out on the samples. Three investigation groups were adopted to evaluate the effect of the spacer monofilament material, diameter, and slope on energy absorption capacity. It was determined that shape memory alloy monofilament with 0.1 mm diameter was the optimum configuration to be utilized as spacer yarn in a typical 3D weft knitted fabric. It was also concluded that higher-inclined spacer monofilament in spacer fabric was the optimum choice for knitting cushioning pads as it absorbed more energy. The energy absorption capacity of the optimum design of spacer fabric obtained in this study, increased by a factor of 2.4 compared with commercial polyamide pads. This design can be utilized in any cushioning pad exposed to high mechanical stress due to impact, sports and daily activities.


2019 ◽  
Vol 86 (6) ◽  
Author(s):  
S Gouripriya ◽  
Parag Tandaiya

Porous bulk metallic glasses (BMGs) exhibit an excellent combination of superior mechanical properties such as high strength, high resilience, large malleability, and energy absorption capacity. However, a mechanistic understanding of their response under diverse states of stress encountered in practical load-bearing applications is lacking in the literature. In this work, this gap is addressed by performing three-dimensional finite element simulations of porous BMGs subjected to a wide range of tensile and compressive states of stress. A unit cell approach is adopted to investigate the mechanical behavior of a porous BMG having 3% porosity. A parametric study of the effect of stress triaxialities T = 0, ±1/3, ±1, ±2, ±3, and ±∞, which correspond to stress states ranging from pure deviatoric stress to pure hydrostatic stress under tension and compression, is conducted. Apart from the influence of T, the effects of friction parameter, strain-softening parameter and Poisson’s ratio on the mechanics of deformation of porous BMGs are also elucidated. The results are discussed in terms of the simulated stress-strain curves, pore volume fraction evolution, strain to failure, and development of plastic deformation near the pore. The present results have important implications for the design of porous BMG structures.


Sign in / Sign up

Export Citation Format

Share Document