Factors influencing microstructural evolution in nanoparticle sintered Ag die attach

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000050-000058 ◽  
Author(s):  
S.A. Paknejad ◽  
A. Mansourian ◽  
Y. Noh ◽  
K. Khtatba ◽  
L. Van Parijs ◽  
...  

The behaviour of sintered silver die attach at high temperature has been investigated. Assemblies were made by sintering a commercially available paste composed of Ag nanoparticles with zero applied pressure on the die. The morphology of the cross sectioned surface of assemblies remains stable even at temperatures of up to 400 °C. This behaviour remained consistent even inside vacuum or after acid cleaning of the free surface. In contrast, the same sintered Ag material in the interior of a joint or sintered under a glass cover slip showed rapid microstructural changes even at 300 °C. These samples were investigated using an optical microscope to analyse the changes in the microstructure after storage at 200 to 500 °C. The observations showed a 20% increase in silver grain size after only 5 h storage at 300 °C. However, in the case of a free surface, no changes were observed after 60h storage at 400 °C. These observations were combined with DSC experiments in order to suggest the cause of the difference in behaviour. The results suggest ways of stabilizing sintered silver materials so that they can be used in applications up to 400 °C without significant structural changes occurring in the material.

2007 ◽  
Vol 1058 ◽  
Author(s):  
T Phanindra Sai ◽  
A K Raychaudhuri

ABSTRACTMolecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.


Author(s):  
Francisco de Melo Viríssimo ◽  
Paul A. Milewski

The problem of two layers of immiscible fluid, bordered above by an unbounded layer of passive fluid and below by a flat bed, is formulated and discussed. The resulting equations are given by a first-order, four-dimensional system of PDEs of mixed-type. The relevant physical parameters in the problem are presented and used to write the equations in a non-dimensional form. The conservation laws for the problem, which are known to be only six, are explicitly written and discussed in both non-Boussinesq and Boussinesq cases. Both dynamics and nonlinear stability of the Cauchy problem are discussed, with focus on the case where the upper unbounded passive layer has zero density, also called the free surface case. We prove that the stability of a solution depends only on two ‘baroclinic’ parameters (the shear and the difference of layer thickness, the former being the most important one) and give a precise criterion for the system to be well-posed. It is also numerically shown that the system is nonlinearly unstable, as hyperbolic initial data evolves into the elliptic region before the formation of shocks. We also discuss the use of simple waves as a tool to bound solutions and preventing a hyperbolic initial data to become elliptic and use this idea to give a mathematical proof for the nonlinear instability.


Author(s):  
Fei Qin ◽  
Shuai Zhao ◽  
Yanwei Dai ◽  
Lingyun Liu ◽  
Tong An ◽  
...  

Abstract Thermo-mechanical reliability assessment for sintered silver is a crucial issue as sintered silver is a promising candidate of die-attachment materials for power devices. In this paper, the nano-indentation tests are performed for sintered silver in typical die-attach interconnection under different thermal cycles. Based on thermal cycling test, the Young's modulus and hardness of sintered silver layer have been presented. It is found that the Young's modulus and hardness of sintered silver layer changes slightly although the microstructure of sintered silver also presents some variations. The stress and strain curves for different thermal cycling tests for sintered silver based on reverse analysis of nano-indentation are also given. The results show that the elastoplastic constitutive equations change significantly after thermal cycling tests, and the yielding stress decreases remarkably after 70 thermal cycles. The experimental investigation also show that the cracking behaviors of sintered silver depends on its geometry characteristics, which implies that the possible optimization of sintered silver layer could enhance its thermo-mechanical performance.


2013 ◽  
Vol 10 (9) ◽  
pp. 15373-15414 ◽  
Author(s):  
J. Otto ◽  
D. Berveiller ◽  
F.-M. Bréon ◽  
N. Delpierre ◽  
G. Geppert ◽  
...  

Abstract. Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to intense thinning regimes) were examined. During stand establishment, summertime canopy albedo is driven by tree species. In the later stages of stand development, the effect of tree species on summertime canopy albedo decreases in favour of an increasing influence of forest thinning on summertime canopy albedo. These trends continue until the end of the rotation where thinning explains up to 50% of the variance in near-infrared canopy albedo and up to 70% of the variance in visible canopy albedo. More intense thinning lowers the summertime shortwave albedo in the canopy by as much as 0.02 compared to unthinned forest. The structural changes associated with forest thinning can be described by the change in LAI in combination with crown volume. However, forests with identical canopy structure can have different summertime albedo values due to their location: the further north a forest is situated, the more the solar zenith angle increases and thus the higher is the summertime canopy albedo, independent of the wavelength. Despite the increase of absolute summertime canopy albedo values with latitude, the difference in canopy albedo between managed and unmanaged forest decreases with increasing latitude. Forest management thus strongly altered summertime forest albedo.


Author(s):  
Moha’med O. Al-Jaafreh ◽  
Adel A. Al-Jumaily

The mean arterial pressure (MAP) is a very important cardiovascular parameter for physicians to diagnose various cardiovascular diseases. Many algorithms were used to estimate MAP with different accuracy. These algorithms used different factors, such as blood level, pulses, and external applied pressure, photo-plethysmography (PPG) signal features, heart rate (HR), and other factors. In addition, some natural-based techniques were employed to minimize the difference between estimated and measured blood pressure, as well as to measure blood pressure continuously. This article presents an algorithm to estimate MAP, utilizing the HR, Stroke Volume (SV), and Total Peripheral Resistance (TPR), with considering SV changing influence; this consideration is investigated mathematically, and by the Particle Swarm Optimization (PSO) technique.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000129-000134 ◽  
Author(s):  
Kewei Xiao ◽  
Jesus N. Calata ◽  
Hanguang Zheng ◽  
Khai D.T. Ngo ◽  
Guo-Quan Lu

Sintered nanoscale silver joint is an emerging lead-free die-attach solution for high-temperature packaging because of silver's high melting temperature. For bonding small chips, the nanosilver solution can be achieved with a simple heating profile under atmospheric pressure. However, for bonding large-area chips, e.g. > 1 cm2 IGBT chips, uniaxial pressure of a few MPa has been found necessary during the sintering stage of the bonding process, which is carried out at temperatures below 275°C. Hot-pressing at high temperatures can cause significant wear and tear on the processing equipment, resulting in high maintenance cost. In this study, we ran a series of experiments aimed at lowering the hot-pressing temperature. Specifically, we examined a process involving hot-press drying, followed by sintering without any applied pressure. A fractional factorial design of experiments was used to identify the importance and interaction of various processing parameters, such as hot-pressing pressure/temperature/time and sintering temperature/time, on the final bond quality of sintered nanosilver joints. Based on the results, a simpler process, consisting of hot-press drying at 180°C under 3 MPa, followed by sintering at 275°C under atmospheric pressure was found to produce attachments with die-shear strength in excess of 30 MPa.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001585-001605 ◽  
Author(s):  
Paul Panaccione ◽  
Tao Wang ◽  
Guo-Quan Lu ◽  
Xu Chen ◽  
Susan Luo

Heat removal in packaged high-power light-emitting diode (LED) chips is critical to device performance and reliability. Thermal performance of LEDs is important in that lowered junction temperatures extend the LED's lifetime at a given photometric flux (brightness). Optionally, lower thermal resistance can enable increased brightness operation without exceeding the maximum allowable Tj for a given lifetime. A significant portion of the junction-to-case thermal resistance comes from the joint between chip and substrate, or the die-attach layer. In this study, we evaluated three different types of leading die-attach materials; silver epoxy, lead-free solder, and an emerging nanosilver paste. Each of the three was processed via their respective physical and chemical mechanisms: epoxy curing by cross-linking of polymer molecules; intermetalic soldering by reflow and solidification; and nanosilver sintering by solid-state atomic diffusion. High-power LED chips with a chip area of 3.9 mm2 were attached by the three types of materials onto metalized aluminum nitride substrates, wire-bonded, and then tested in an electro-optical setup. The junction-to-heatsink thermal resistance of each LED assembly was determined by the wavelength shift methodology, described in detail in this paper. We found that the average thermal resistance in the chips attached by the nanosilver paste was the lowest, and it is the highest from the chips attached by the silver epoxy: the difference between the two was about 0.7°C/W, while the difference between the sintered and soldered was about 0.3°C/W. The lower thermal resistance in the sintered joints is expected to significantly improve the photometric flux from the device. Simple calculations, excluding high current efficiency droop, predict that the brightness improvement could be as high as 50% for the 3.9 mm2 chip. The samples will be functionally tested at high current, in both steady-state and pulsed operation, to determine brightness improvements, including the impact of droop. Nanosilver die-attach on a range of chip sizes up to 12 mm2 are also considered and discussed.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000178-000187
Author(s):  
A. A. Wereszczak ◽  
Z. Liang ◽  
M. K. Ferber ◽  
L. D. Marlino

There are numerous attributes of sintered silver (Ag) as a bonded interface between die and substrate or even between substrate and heat sink in power devices. This is attested to by the relatively large number of studies devoted to it the last several years. Sintered silver potentially has a high temperature capability, high electrical and thermal conductivities, its microstructure is in equilibrium, it could predictably respond linearly elastically during thermal cycling, and the time-dependent pore coalescence and pore growth that exists with solders is apparently minimal or even nonexistent. But sintered silver bonding is a relatively new technology and solid-state sintering science and its application can be unfamiliar to solder/bonding practitioners. There are at least five different aspects of it compared to solder bonding and those are overviewed here based on the authors' experience with Ag-sintering over the last several years. For sintered-Ag interconnect bonding: it is a solid-state process (i.e., no melting); its bond strength is affected by the topography of the mating surfaces; concurrent pressure application during processing can improve bond strength; issues associated with the paste's organic binder burnout and exhaust can arise depending on the interconnect size; and porosity is indigenous to its bulk microstructure requiring its consideration and possible management. Increased understanding of these unique characteristics will help advance employment of sintered-Ag technology and the exploitation of its attributes for fabricating more reliable, higher-temperature- capable, and more thermally conductive power electronic modules.


2016 ◽  
Vol 13 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Paul Croteau ◽  
Sayan Seal ◽  
Ryan Witherell ◽  
Michael Glover ◽  
Shashank Krishnamurthy ◽  
...  

The emergence of wide band gap devices has pushed the boundaries of power converter operations and high power density applications. It is desirable to operate a power inverter at high switching frequencies to reduce passive filter weight and at high temperature to reduce the cooling system requirement. Therefore, materials and components that are reliable at temperatures ranging from −55°C to 200°C, or higher, are needed. Sintered silver is receiving significant attention in the power electronic industry. The porous nature of sintered nanosilver paste with a reduced elastic modulus has the potential to provide strain relief between the die component and substrate while maintaining its relatively high melting point after sintering. The test results presented herein include tensile testing to rupture of sintered silver film to characterize stress-strain behavior, as well as die shear and thermal cyclic tests of sintered silver-bonded silicon die specimens to copper substrates to determine shear strength and reliability.


Sign in / Sign up

Export Citation Format

Share Document