scholarly journals Assessment of the uncertainty of snowpack simulations based on variance decomposition

2015 ◽  
Vol 8 (3) ◽  
pp. 2807-2845 ◽  
Author(s):  
T. Sauter ◽  
F. Obleitner

Abstract. State of the art numerical snow models essentially rely on observational data for initialization, forcing, parametrization and validation. Such data are available in increasing amount, but the inherent propagation of related uncertainties on the simulation results has received rather limited attention so far. Depending on their complexity, even small errors can have a profound effect on simulations, which dilutes our confidence in the results. This paper quantifies the fractional contributions of some archetypical measurement uncertainties on key simulation results in a high Arctic environment. The contribution of individual factors on the model variance, either alone or by interaction, is decomposed using Global Sensitivity Analysis. The work focuses on the temporal evolution of the fractional contribution of different sources on the model uncertainty, which provides a more detailed understanding of the model's sensitivity pattern. The decompositions demonstrate, that the impact of measurement errors on calculated snow depth and the surface energy balance components varies significantly throughout the year. Some factors show episodically strong impacts, although there overall mean contribution is low while others constantly affect the results. However, these results are not yet to be generalized imposing the need to further investigate the issue for e.g. other glaciological and meteorological settings.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 492
Author(s):  
Philippe Suchsland ◽  
Francesco Tacchino ◽  
Mark H. Fischer ◽  
Titus Neupert ◽  
Panagiotis Kl. Barkoutsos ◽  
...  

We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method. This technique can reduce the impact of different sources of noise at the sole cost of an increase in the number of measurements to be performed on the target quantum circuit, without additional experimental overhead. We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations within the framework of variational quantum algorithms, thus leading to improved ground-state calculations for quantum chemistry and physics problems beyond state-of-the-art results.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1545 ◽  
Author(s):  
Xianfeng Li ◽  
Jie Chen ◽  
Fan Deng ◽  
Hui Li

This paper presents a novel distributed algorithm for a moving targets search with a team of cooperative unmanned aerial vehicles (UAVs). UAVs sense targets using on-board sensors and the information can be shared with teammates within a communication range. Based on local and shared information, the UAV swarm tries to maximize its average observation rate on targets. Unlike traditional approaches that treat the impact from different sources separately, our framework characterizes the impact of moving targets and collaborating UAVs on the moving decision for each UAV with a unified metric called observation profit. Based on this metric, we develop a profit-driven adaptive moving targets search algorithm for a swarm of UAVs. The simulation results validate the effectiveness of our framework in terms of both observation rate and its adaptiveness.


2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


Author(s):  
K. Velkov ◽  
A. Seubert ◽  
I. Pasichnyk ◽  
A. Pautz

The application of modern coupled thermal-hydraulic neutron-kinetic code systems is state of the art for performing safety analyses. In this paper, a radially asymmetric boron dilution transient in a PWR MOX/UO2 core is defined. The transient is analysed using the coupled code system QUABOX-CUBBOX/ATHLET which is based on fuel-assembly coarse mesh diffusion theory, and the results are compared to the solution obtained with the transport theory-based coupled code system TORT-TD/ATHLET with a pin-wise representation of the core. The aim of this study is to investigate the impact of the transport approach and the diffusion approximation on the simulation results.


2016 ◽  
Vol 3 (2) ◽  
pp. 56-62
Author(s):  
R. Iskra ◽  
V. Vlizlo ◽  
R. Fedoruk

The results of our studies and the data of modern literature regarding the biological role of Cr(III) compounds in conditions of their application in the nutrition for pigs and cattle are discussed. The metabolic impact of Cr(III), coming from different sources – mineral and organic compounds, obtained by chemical synthesis or a nanotechnological method (chromium citrate), as well as in the form of biocomplexes from the cultural medium of Saccharomyces cerevisiae yeasts was analyzed. The metabolic connection between the impact of Cr(III) and the biosynthesis of some hormones – insulin, cortisol – as well as the sensitivity of some tissues and organs to the effect of chromium compounds was studied. A considerable part of the review material was dedicated to the metabolic effect of Cr(III) compounds on the reproductive function of pigs and cattle and their impact on the viability of the offspring and gametes of animals. The data about the stimulating effect of Cr(III) on the growth and development of the organism of piglets and calves, meat and milk performance of these species of animals are discussed. The relevance of dosing Cr(III) in the nutrition of pigs and cattle is highlighted.


Author(s):  
Natalia Nowakowska

Our three existing master narratives of the early Reformation in Poland are all over a century old and mutually contradictory, drawing on different sources to serve differing confessional and national/ist agendas. This chapter offers a fresh narrative of the impact of Lutheranism on the Polish composite monarchy to c.1540, synthesizing these older accounts and updating them with new research findings. This is a narrative in three parts: early signs (1517–24), the great Reformation year (1525), and aftershocks (1526–40). The chapter discusses the challenges of measuring ‘Lutheran’ sentiment, sets these Polish-Prussian events clearly in their comparative European context, and considers what implications they might have for that bigger, familiar tale. It stresses the precocity of Sigismund I’s monarchy, which saw the most far-reaching urban and violent Reformation in 1520s Europe (Danzig), a peasant Reformation rising, and Christendom’s first territorial-princely Reformation, in Ducal Prussia.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 250
Author(s):  
Jiří Hájek ◽  
Zaneta Dlouha ◽  
Vojtěch Průcha

This article is a response to the state of the art in monitoring the cooling capacity of quenching oils in industrial practice. Very often, a hardening shop requires a report with data on the cooling process for a particular quenching oil. However, the interpretation of the data can be rather difficult. The main goal of our work was to compare various criteria used for evaluating quenching oils. Those of which prove essential for operation in tempering plants would then be introduced into practice. Furthermore, the article describes monitoring the changes in the properties of a quenching oil used in a hardening shop, the effects of quenching oil temperature on its cooling capacity and the impact of the water content on certain cooling parameters of selected oils. Cooling curves were measured (including cooling rates and the time to reach relevant temperatures) according to ISO 9950. The hardening power of the oil and the area below the cooling rate curve as a function of temperature (amount of heat removed in the nose region of the Continuous cooling transformation - CCT curve) were calculated. V-values based on the work of Tamura, reflecting the steel type and its CCT curve, were calculated as well. All the data were compared against the hardness and microstructure on a section through a cylinder made of EN C35 steel cooled in the particular oil. Based on the results, criteria are recommended for assessing the suitability of a quenching oil for a specific steel grade and product size. The quenching oils used in the experiment were Houghto Quench C120, Paramo TK 22, Paramo TK 46, CS Noro MO 46 and Durixol W72.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Sign in / Sign up

Export Citation Format

Share Document