ORGANIC MEMORY DEVICES WITH NATURAL RUBBER/ FULLERENE COMPOSITES

2013 ◽  
Vol 86 (4) ◽  
pp. 626-632 ◽  
Author(s):  
J. Aneesh ◽  
P. Predeep

ABSTRACT The application of natural rubber (NR) as cost-effective component for an organic bistable memory device is demonstrated for the first time. An organic bistable memory device based on Cis 1–4 polyisoprene (NR) and fullerene (C60) is a trilayered structure consisting of NR/C60 composite sandwiching a C60 layer and thermally deposited aluminum electrodes on both sides (Al/NR:C60/C60/NR:C60/Al). Investigations on current-voltage (I-V) characteristics of the device revealed promising device performance with a high ON/OFF current ratio and nonvolatile stability in both of its conducting states, indicating the strong potential of the NR:C60 composite as a nonvolatile memory material. Further, attempts are made to fit the current response of the device using existing charge transport models and explain the origin of memory switching in present device.

2004 ◽  
Vol 830 ◽  
Author(s):  
Alokik Kanwal ◽  
Shashi Paul ◽  
Manish Chhowalla

ABSTRACTIn this paper, we describe an all organic molecular memory device that combines the advantages of molecular and organic electronics. We accomplish this by combining C60 molecules with poly(4-vinylphenol) (PVP) and co-dissolving them in iso-propanol. The current-voltage measurements show a large hysteresis in the blend devices, in contrast to pure PVP devices. The thin blend films have been thoroughly characterized using Raman spectroscopy, atomic force microscopy and scanning electron microscopy.


2007 ◽  
Vol 997 ◽  
Author(s):  
Chunglin Tsai ◽  
Ricky J. Tseng ◽  
Yang Yang ◽  
Cengiz S. Ozkan

AbstractHybrid virus/inorganic nanoscrystals are considered as important building blocks towards new types of functionality for electronic devices. We use tobacco mosaic viruses to assemble platinum nanoparticles and conjugate with quantum dots. By forming a thin hybrid nanocomposite layer in the crossbar junction, we show electronic memory effect based on electrical bistable states with a large on/off ratio, and long retention time. Such hybrid bio-inorganic nanostructures for the first time are promising for future bio-inspired nanoelectronics.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. B. Abbasi ◽  
V. F. Fusco ◽  
O. Yurduseven ◽  
T. Fromenteze

AbstractThis paper presents a physical frequency-diverse multimode lens-loaded cavity, designed and used for the purpose of the direction of arrival (DoA) estimation in millimetre-wave frequency bands for 5G and beyond. The multi-mode mechanism is realized using an electrically-large cavity, generating spatio-temporally incoherent radiation masks leveraging the frequency-diversity principle. It has been shown for the first time that by placing a spherical constant dielectric lens (constant-ϵr) in front of the radiating aperture of the cavity, the spatial incoherence of the radiation modes can be enhanced. The lens-loaded cavity requires only a single lens and output port, making the hardware development much simpler and cost-effective compared to conventional DoA estimators where multiple antennas and receivers are classically required. Using the lens-loaded architecture, an increase of up to 6 dB is achieved in the peak gain of the synthesized quasi-random sampling bases from the frequency-diverse cavity. Despite the fact that the practical frequency-diverse cavity uses a limited subset of quasi-orthogonal modes below the upper bound limit of the number of theoretical modes, it is shown that the proposed lens-loaded cavity is capable of accurate DoA estimation. This is achieved thanks to the sufficient orthogonality of the leveraged modes and to the presence of the spherical constant-ϵr lens which increases the signal-to-noise ratio (SNR) of the received signal. Experimental results are shown to verify the proposed approach.


1996 ◽  
Vol 433 ◽  
Author(s):  
Norifumi Fujimura ◽  
Tadashi Ishida ◽  
Takeshi Yoshimura ◽  
Taichiro Ito

AbstractWe have proposed ReMnO3 (Re:rare earth) thin films, as a new candidate for nonvolatile memory devices. In this paper, we try to fabricate (0001) oriented YMnO3 films on (111)MgO, (0001)ZnO:Al/(0001) sapphire and (111)Pt/(111)MgO using rf magnetron sputtering. We succeed in obtaining (0001) epitaxial YMnO3 films on (111) MgO and (0001)ZnO:Al/(0001)sapphire substrate, and polycrystalline films on (111)Pt/(1 11)MgO for the first time. Electrical property of the bottom electrode (ZnO:Al) changes with varying the deposition condition of YMnO3 films. However, we find an optimum deposition condition of ZnO:Al film such that it functions as a bottom electrode even after YMnO3 film deposition. The dielectric properties of the epitaxial and polycrystalline YMnO3 films are almost the same. The YMnO3 films show leaky electrical properties. This may be caused by a change in the valence electron of Mn from 3+.


ACS Nano ◽  
2016 ◽  
Vol 10 (8) ◽  
pp. 7598-7603 ◽  
Author(s):  
Yongsung Ji ◽  
Yang Yang ◽  
Seoung-Ki Lee ◽  
Gedeng Ruan ◽  
Tae-Wook Kim ◽  
...  

2008 ◽  
Vol 29 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Ping-Hung Tsai ◽  
Kuei-Shu Chang-Liao ◽  
Chu-Yung Liu ◽  
Tien-Ko Wang ◽  
P. J. Tzeng ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 478-487
Author(s):  
Yu Liu ◽  
Heliang Wang ◽  
Xiwei Guo ◽  
Mingyuan Yi ◽  
Lihong Wan ◽  
...  

Abstract With the emerging of sustainability, the fabrication of effective and eco-friendly agents for rubber industry has attracted extensive attention. In this study, a novel and nontoxic titanium dioxide-based vulcanization accelerator (xanthate-modified nanotitanium dioxide (TDSX)) with excellent antibacterial performance, for the first time, was synthesized under the catalyst of ceric ammonium nitrate. Notably, the thermal stability of xanthate was greatly enhanced after being grafted on titanium dioxide (TiO2) nanoparticles, in which the activation energy was increased from 6.4 to 92.5 kJ/mol, enabling the obtained TDSX with multiple functions, mainly consisting of fabulous vulcanization-promoting effects, reinforcing effects, antibacterial properties, and anti-ultraviolet aging effects for natural rubber (NR). Simultaneously, the TDSX can be effectively and uniformly dispersed in the rubber matrix along with the developed interface interaction between TDSX particles and rubber matrix. Compared to the traditional accelerators 2-mercaptobenzothiazole (M) system, the tensile strength and the tearing strength of NR/TDSX was improved by 26.3 and 40.4%, respectively. Potentially, our work for preparing green vulcanization accelerator can provide a new design strategy for multifunctional high performance elastomer materials.


Sign in / Sign up

Export Citation Format

Share Document