scholarly journals Valorization of winery and distillery by-products by hydrothermal carbonization

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Barbanera ◽  
Alessandro Cardarelli ◽  
Eleonora Carota ◽  
Marco Castellini ◽  
Tommaso Giannoni ◽  
...  

AbstractThis work aims at finding an alternative strategy to manage the waste generated by the winemaking industry to obtain a solid biofuel and phenolic compounds. The effect of temperature (180–260 °C), residence time (1–7 h), and biomass-to-liquid ratio (0.05–0.25) on the co-hydrothermal carbonization of vine pruning and exhausted grape pomace, by using vinasse as moisture source, is studied. The effect of the variables is investigated and optimized using the Box–Behnken design of response surface methodology to maximize mass yield, fuel ratio, energy densification yield and phenols extraction yield and to minimize energy consumption. The statistical analysis shows that the carbonization temperature is a crucial parameter of the process, decreasing the product yield on one hand and improving the quality of hydrochar on the other. At the optimal conditions (246.3 °C, 1.6 h, 0.066), an hydrochar yield of 52.64% and a calorific value of 24.1 MJ/kg were obtained. Moreover, the analysis of the H/C and O/C ratios of hydrochars demonstrates that carbonisation significantly improves the fuel properties of solid biofuel. Liquid by-products obtained from the HTC process are found to contain high concentrations of organic matter but the BOD/COD ratios suggest their potential valorization by biological methods.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3465
Author(s):  
José Airton de Mattos Carneiro-Junior ◽  
Giulyane Felix de de Oliveira ◽  
Carine Tondo Alves ◽  
Heloysa Martins Carvalho Andrade ◽  
Silvio Alexandre Beisl Vieira de Beisl Vieira de Melo ◽  
...  

Torrefaction has been investigated to improve the desirable properties of biomass as solid biofuel, usually used in natura as firewood in several countries. This paper has the main objective to present a broad characterization of the biomass Prosopis juliflora (P. juliflora), investigating its potential as a solid biofuel after its torrefaction process. The methodology was based on different procedures. The experimental runs were carried out at 230, 270, and 310 °C for 30 min, using a bench-scale torrefaction apparatus, with an inert atmosphere. In order to investigate the effect of temperature in constant time, torrefaction parameters were calculated, such as mass yield, energy yield, calorific value, base-to-acid ratio (B/A), and the alkaline index (AI). The physicochemical properties of the torrefied samples were determined and thermogravimetric analysis was used to determine the kinetic parameters at four different heating rates of 5, 10, 20, and 30 °C/min. Pyrolysis kinetics was investigated using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) isoconversional methods. Highly thermally stable biofuels were obtained due to the great degradation of hemicellulose and cellulose during torrefaction at higher temperatures. The highest heating value (HHV) of the samples varied between 18.3 and 23.1 MJ/kg, and the energy yield between 81.1 and 96.2%. The results indicate that P. juliflora torrefied becomes a more attractive and competitive solid biofuel alternative in the generation of heat and energy in northeast Brazil.


Author(s):  
Muhammad Imran Din ◽  
Alizzah Amanat ◽  
Zaib Hussain ◽  
Rida Khalid ◽  
Abdul Rauf

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4667
Author(s):  
Sunyong Park ◽  
Hui-Rim Jeong ◽  
Yun-A Shin ◽  
Seok-Jun Kim ◽  
Young-Min Ju ◽  
...  

Agricultural by-products have several disadvantages as fuel, such as low calorific values and high ash contents. To address these disadvantages, this study examined the mixing of agricultural by-products and spent coffee grounds, for use as a solid fuel, and the improvement of fuel characteristics through torrefaction. Pepper stems and spent coffee grounds were first dried to moisture contents of <15% and then combined, with mixing ratios varying from 9:1 to 6:4. Fuel pellets were produced from these mixtures using a commercial pelletiser, evaluated against various standards, and classified as grade A, B, or Bio-SRF. The optimal ratio of pepper stems to spent coffee grounds was determined to be 8:2. The pellets were torrefied to improve their fuel characteristics. Different torrefaction temperatures improved the mass yields of the pellets to between 50.87% and 88.27%. The calorific value increased from 19.9% to 26.8% at 290 °C. The optimal torrefaction temperature for coffee ground pellets was 230 °C, while for other pellets, it was 250 °C. This study provides basic information on the potential enhancement of agricultural by-products for fuel applications.


2021 ◽  
Vol 9 (4) ◽  
pp. 105431
Author(s):  
Kevin MacDermid-Watts ◽  
Eniola Adewakun ◽  
Trishan Deb Abhi ◽  
Ranjan Pradhan ◽  
Animesh Dutta

2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986290 ◽  
Author(s):  
Massimo Tacchini ◽  
Ilaria Burlini ◽  
Immacolata Maresca ◽  
Alessandro Grandini ◽  
Tatiana Bernardi ◽  
...  

Vitis vinifera L. leaves from pruning are by-products of the wine industry and represent an important source of secondary raw material, thanks to their polyphenols content. Optimization of the extraction processes is a key factor for their valorization, and Design of Experiment (DOE) could be a tool to obtain the most performing extract in terms of polyphenols quality/quantity and bioactivity. Vitis vinifera Lambrusco leaves were subjected to ultrasound-assisted extractions guided by a 23 factorial design. Three independent parameters (% solvent, time of extraction, and solvent:solid ratio) were considered to evaluate the extraction process by analyzing the extraction yield, the total phenolic content (Folin-Ciocalteu assay), and the antioxidant capacity (DPPH assay). Moreover, the content of the main molecules was identified and quantified by reversed-phase high-performance liquid chromatography coupled with diode array detection and mass spectrometry. The DOE highlighted the best extraction conditions that showed slight changes considering the different evaluating parameters. The highest extraction yield was obtained by extraction with 100% water, 60 minutes of extraction time, and 30:1 solvent:solid ratio, but it was neither the richest in polyphenols nor antioxidant capacity. The latter 2 characteristics were associated with the extraction performed using 50% ethanol, 35 minutes of extraction time, and a 20:1 solvent:solid ratio. That extract also exhibited the highest quantity of flavonols.


1996 ◽  
Vol 33 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Allen C. Chao ◽  
Sergio J. de Luca ◽  
Carlos N. Idle

Studies concerning the treatment, stabilization and final disposal of biosolids, one of the by-products of wastewater treatment, in environmental recovery, have been intensified by the sanitary and environmental effects of land disposal. The careful assessment of biosolid quality shows that, when appropriately managed, the environmental risks of their uses can be minimized by chemical stabilization, and biosolids could even be used as fertilizer and soil conditioner. A research study of biosolid stabilization was performed using lime as a standard process compared to potassium ferrate (VI). The chances of leaching and solubilization of metals were tested, simulating conditions for disposal in the environment. The sanitary effectiveness in terms of pathogens (bacteria, fungi and helminth eggs) were also evaluated. Experiments were performed on the lime and ferrate(VI) treatment of compounds such as ammonia, nitrate, soluble sulphides, and total sulphates, indicators of odouriferous offensive compounds which might occasionally prevent some uses of the solids, and the results are presented in this paper. Wastewater Treatment Plants emit offensive odours generated during the sewage treatment process, as well as during the treatment and the management of biosolids. This occurs in the drying beds and the spreading of biosolids on land, due to the high concentrations of sulphur compounds, nitrogen compounds, acids and organic compounds (aldehydes and ketones). The potassium ferrate(VI) utilized in the research is a powerful oxidizing agent throughout the pH scale, with the advantage of not generating by-products which will cause toxicity or mutagenicity (DE LUCA, 1981). The ion ferrate(VI) has greater oxidizing power than permanganate, e.g., it oxidizes reduced sulfur forms to sulphate, ammonia to nitrate, hypochlorite to chlorite and chlorite to chlorate(DE LUCA et al., 1992; CHAO et al., 1992). This paper shows that, as expected, the potassium ferrate (VI) treatment replaces several chemical products utilized for odour control of sludges, mainly aggressive odours caused by ammonia and sulphides, through the formation of precipitates with iron compounds. Ferrate (VI) has often been shown to destroy soluble sulphides, transforming them into sulphate. The generation of oxygen in the decomposition of ferrate(VI) increases its oxidizing power. Ferrate(VI) applied to sludges also has the double effect of transforming ammonia into nitrates, such that this product takes the place of sulphates, acting as an electron acceptor, thus preventing the development of further odours when biosolids are utilized.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chi Wei ◽  
Yu-Chiao Yang ◽  
Show-Jen Hong

Oleanolic acid (OA) and ursolic acid (UA) were extracted fromHedyotis diffusausing a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed thatH. diffusais a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA fromH. diffusaat high concentrations.


2021 ◽  
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Osman ◽  
Moviin Damodaran ◽  
Shan En Liew

Abstract Interest in torrefaction has improved along the recent years and it has been studied extensively as a mean of preparing solid fuels. Biomass to be considered as a renewable source of energy must endeavor improvement continuously and where it is more sustainable going forward in which can come from waste product, wild and cultivated plant. The aim of this study is to investigate the effect of temperature and residence time of wild Napier grass and Oil palm petiole from waste. The torrefied samples were derived by pyrolysis reactor mimicking torrefaction procedure. The temperature parameter ranges between 220 and 300 ℃ while residence time parameter is from 10 minutes to 50 minutes of reaction. It was found that as temperature and time increasing, moisture content and amount of O and H atoms decreases as well as both mass and energy yield, but calorific value and the energy density increase along with both two parameters. Between the two parameters, the temperature variation shows more significant changes to the torrefied samples as compared time. The optimized temperature and time are found to be 260 ℃ and 30 minutes, respectively. Remarkably, the usage of pyrolyzer as torrefaction reaction has proved to be a good option since they share similar characteristics while can also produce product with similar properties reflecting torrefaction process.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Katarzyna Jagodzińska ◽  
Michał Czerep ◽  
Edyta Kudlek ◽  
Mateusz Wnukowski ◽  
Marek Pronobis ◽  
...  

Abstract To date, few studies on the potential utilization of agricultural residue torrefaction products have been performed. Thus, torrefaction product characterization aimed at its potential utilization was performed. Wheat–barley straw pellets and wheat–rye chaff were used in the study. The impact of the torrefaction temperature (280–320 °C) on polycyclic aromatic hydrocarbons (PAHs) content in the biochar and noncondensable gas (noncondensables) composition was investigated. The impact of the torrefaction time (30–75 min) on the composition of the condensable volatiles (condensables) and their toxicity were also studied. The torrefaction process was performed in a batch-scale reactor. The PAH contents were measured using high-performance liquid chromatography (HPLC), and the noncondensables composition was measured online using a gas analyzer and then gas chromatograph with flame ionization detector (GC-FID). The condensables composition and main compound quantification were determined and quantified using gas chromatography–mass spectrometry (GC/MS). Three toxicity tests, for saltwater bacteria (Microtox® bioassay), freshwater crustaceans (Daphtoxkit F magna®), and vascular plants (Lemna sp. growth inhibition test), were performed for the condensables. The PAHs content in the biochar, regardless of the torrefaction temperature, allows them to be used in agriculture. The produced torgas shall be co-combusted with full-caloric fuel because of its low calorific value. Toxic compounds (furans and phenols) were identified in the condensable samples, and regardless of the processing time, the condensables were classified as highly toxic. Therefore, they can be used either as pesticides or as an anaerobic digestion substrate after their detoxification.


Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


Sign in / Sign up

Export Citation Format

Share Document