Haeckelite Phosphorous: An Emerging 2D Allotrope of Phosphorous for Potential Use in LIBs/SIBs

Author(s):  
Gayatree Barik ◽  
Sourav Pal

A large surface-to-volume ratio is an essential feature of 2D materials used in many potential electronic applications. This work proposed that the Haeckelite structured phosphorous can be another promising alternative...

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 316
Author(s):  
Samantha Lo ◽  
Mh Busra Fauzi

Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1427
Author(s):  
Katarzyna Solarska-Ściuk ◽  
Kinga Adach ◽  
Sylwia Cyboran-Mikołajczyk ◽  
Dorota Bonarska-Kujawa ◽  
Agnieszka Rusak ◽  
...  

Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.


Author(s):  
Joshua Eisenstat ◽  
Dennis Gotthardt ◽  
Rebecca Assor ◽  
Liam Dempsey ◽  
Muhammad Hasibul Hasan

ABSTRACT Nanomaterials observe specialized properties relative to gross materials. Due to their small size, specialized nanomaterial properties include decreased reactivity, an increased surface area to volume ratio, heightened structural properties, and in some cases, antimicrobial and antibacterial effects. Current researchers are looking to use nanoparticle/nanomaterial properties to solve prevalent dental issues that cannot be addressed with traditionally used materials. This paper will serve as an extensive review of current nanomaterial applications as they pertain to dental fillings and dental filling processes. Comparative assessments of traditional materials used in dental fillings will be made as well as comparative assessments of currently used nanomaterials in dental fillings. Material comparisons are based on criteria pertaining to biocompatibility, toxicity, reactivity, cost, and antimicrobial/antibacterial properties. When comparing the three most currently used dental filling nanomaterials – Carbon-Based Nanotubes, Silica Nanoparticles and Silver-Coated Nanoparticles – it was observed that Silica Nanoparticles demonstrated the greatest material advantage and should be recommended for continued use. Issues regarding future developmental dental filling applications of graphene nanoparticles, organic nanoparticles and gold nanoparticles will also be discussed. Keywords: Nanomaterials, antibacterial, dental fillings, silica resins, biocompatibility.  


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1760 ◽  
Author(s):  
Fernanda Guerra ◽  
Mohamed Attia ◽  
Daniel Whitehead ◽  
Frank Alexis

Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants—such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides—is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.


2021 ◽  
Vol 30 (1) ◽  
pp. 257-264
Author(s):  
Muna H. Kareem ◽  
Adi M. Abdul Hussein ◽  
Haitham Talib Hussein

Abstract In this study, porous silicon (PSi) was used to manufacture gas sensors for acetone and ethanol. Samples of PSi were successfully prepared by photoelectrochemical etching and applied as an acetone and ethanol gas sensor at room temperature at various current densities J= 12, 24 and 30 mA/cm2 with an etching time of 10 min and hydrofluoric acid concentration of 40%. Well-ordered n-type PSi (100) was carefully studied for its chemical composition, surface structure and bond configuration of the surface via X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy and photoluminescence tests. Results showed that the best sensitivity of PSi was to acetone gas than to ethanol under the same conditions at an etching current density of 30 mA/cm2, reaching about 2.413 at a concentration of 500 parts per million. The PSi layers served as low-cost and high-quality acetone gas sensors. Thus, PSi can be used to replace expensive materials used in gas sensors that function at low temperatures, including room temperature. The material has an exceptionally high surface-to-volume ratio (increasing surface area) and demonstrates ease of fabrication and compatibility with manufacturing processes of silicon microelectronics.


Author(s):  
Xiaoyan Wang ◽  
Qing Wang ◽  
Yufeng Yang ◽  
Wenbo Yu

Aquatic invertebrate diversity reflects water quality and the health of aquatic ecosystems and should be monitored as an essential feature of freshwater ecosystems. The resting eggs of aquatic invertebrates in sediments populate the overlying water. The diversity of invertebrates in waters and their resting eggs in sediments in Baiyangdian Lake, Xiongan, North China, were assessed using high-throughput sequencing (HTS) with a pair of 18S rRNA gene adaptor-linked primers. The total of 99 operational taxonomic units (OTUs) derived from 353,755 invertebrate sequences (mostly zooplankton) were revealed by this study. A total of 50 species in the water samples including 20 rotifers, 11 copepods, 1 cladoceran and 18 other species were sorted out. In the sediment 37 species, including 21 rotifers, 3 copepods, 1 cladoceran and 12 other species, were identified. There were 24 species in common between water and corresponding sediments. Invertebrate OTU richness in water samples was higher than that in sediments (p < 0.01), while there was no significant difference in the Shannon-Wiener index. These results suggest that HTS is a promising alternative for efficient biodiversity assessment and monitoring.


2020 ◽  
Vol 12 (21) ◽  
pp. 9013
Author(s):  
Kristina Navickaitė ◽  
Michael Penzel ◽  
Christian Bahl ◽  
Kurt Engelbrecht ◽  
Jaka Tušek ◽  
...  

Elastocaloric cooling is a promising alternative to conventional cooling using the vapour compression cycle, with potentially higher theoretical exergy efficiency. Nevertheless, there is a number of challenges to be tackled before the technology can be commercially available world-wide. In this study, the potential of double corrugated regenerators to enhance the cooling power of an elastocaloric device that would be operating under compression loading was investigated. The numerical performances of two types of double corrugated geometries are presented and compared to a flat plate regenerator as a reference. The double corrugated geometry significantly increases the surface area to volume ratio and convection of the regenerator, which allows an increase in the power density of the device.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255637
Author(s):  
Yu Zhang ◽  
Wenjing Xu ◽  
Guangjie Liu ◽  
Zhiyong Zhang ◽  
Jinlong Zhu ◽  
...  

The bandgap of two-dimensional (2D) materials plays an important role in their applications to various devices. For instance, the gapless nature of graphene limits the use of this material to semiconductor device applications, whereas the indirect bandgap of molybdenum disulfide is suitable for electrical and photo-device applications. Therefore, predicting the bandgap rapidly and accurately for a given 2D material structure has great scientific significance in the manufacturing of semiconductor devices. Compared to the extremely high computation cost of conventional first-principles calculations, machine learning (ML) based on statistics may be a promising alternative to predicting bandgaps. Although ML algorithms have been used to predict the properties of materials, they have rarely been used to predict the properties of 2D materials. In this study, we apply four ML algorithms to predict the bandgaps of 2D materials based on the computational 2D materials database (C2DB). Gradient boosted decision trees and random forests are more effective in predicting bandgaps of 2D materials with an R2 >90% and root-mean-square error (RMSE) of ~0.24 eV and 0.27 eV, respectively. By contrast, support vector regression and multi-layer perceptron show that R2 is >70% with RMSE of ~0.41 eV and 0.43 eV, respectively. Finally, when the bandgap calculated without spin-orbit coupling (SOC) is used as a feature, the RMSEs of the four ML models decrease greatly to 0.09 eV, 0.10 eV, 0.17 eV, and 0.12 eV, respectively. The R2 of all the models is >94%. These results show that the properties of 2D materials can be rapidly obtained by ML prediction with high precision.


2021 ◽  
Vol 37 ◽  
pp. e37078
Author(s):  
José Vaz Pinheiro Neto

Biodiesel is a clean and cyclical energy resource that is derived from animal and/or vegetable fat. As it blends well with petrodiesel, biodiesel is added to Brazilian commercial diesel. The main raw materials used to produce biodiesel in Brazil include soybean, corn, and sunflower oils. However, these are also used for human consumption and hence, have a high market value. Therefore, pinhão manso oil, which exhibits high productivity at low cost, is a promising alternative. However, the high acidity index of this oil results in a low transesterification yield and the produced biofuel does not meet the requirements imposed by the ANP. Thus, this study intends to demonstrate that a large part of the free fatty acids in pinion oil are present in the seed endocarp. For the development of the project, the oil was extracted by hot solvent, using the soxhlet equipment and the hexane solvent, to determine the acidity index, the titration technique was used, the titrant used was sodium hydroxide. So the acidity index of the oil extracted from the seed with its shell is 10.9 mgKOH/g, while the lipid obtained without the shell exhibits a value of 0.95 mgKOH/g, proving the influence of the endocarp.


2020 ◽  
Vol 27 (17) ◽  
pp. 2872-2886
Author(s):  
Laura G. Gómez-Mascaraque ◽  
Amparo Lopez-Rubio

The electrospraying technique, which consists of electrohydrodynamic atomization of polymeric fluids, can be used to generate dry nano- and microparticles by subjecting a polymer solution, suspension or melt to a high voltage (typically in the range of 7-20 kV) electric field. This potential can be exploited for developing nano- and microencapsulation structures under mild temperature conditions. Thus, it constitutes a promising alternative to conventional microencapsulation techniques for sensitive ingredients, like most plant-derived bioactive compounds, especially for their application in the food sector. Given the importance of plants as one of the major sources of dietary bioactive compounds, significant attention has been recently paid to research the encapsulation of phytochemicals through novel techniques such as electrospraying, aiming to provide new tools for the development of innovative functional food products and nutraceuticals. In this review, the latest advances in the application of electrospraying for nano- and microencapsulation of phytochemicals are discussed, with a focus on their potential use in the food sector.


Sign in / Sign up

Export Citation Format

Share Document