scholarly journals P10.03 Immunological differences between patient-matched normal-derived and GBM-derived pericytes

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii41-iii41
Author(s):  
J Macapagal ◽  
A Brooks ◽  
P Schweder ◽  
E Mee ◽  
R Faull ◽  
...  

Abstract BACKGROUND Glioblastoma Multiforme (GBM) is the most aggressive, fatal, yet most common form of brain malignancy in adults. Despite advances in immune-based treatments for other modes of cancer, GBM remains a challenge due to its ability to dampen immune responses via mechanisms not yet fully understood. With a median survival time of only 15 months following diagnosis, there is a strong push to find new targets for therapy. The microenvironment comprises a mixture of malignant tumour cells, stroma, blood vessels and infiltrating inflammatory cells. Despite advances in understanding the contribution of these cells in establishing an anti-inflammatory microenvironment, the contribution of pericytes, an important neurovascular mural cell that forms the blood-brain barrier, has been inadequately studied. Therefore, we investigated the differences in immune profile between patient-matched non-neoplastic brain- and GBM-derived pericytes under basal and induced conditions. MATERIAL AND METHODS Primary patient-matched non-neoplastic brain and GBM tumour derived pericytes were isolated from specimens excised from consenting patients undergoing GBM surgical resection at Auckland City Hospital. Pericytes were treated with inflammatory cytokines including IL-1β, IFN-γ, TNFα and TGFβ for up to 24 hours. Inflammatory profile changes were probed for using fluorescent immunocytochemistry, qRT-PCR and spectral flow cytometry. Media was also collected for secretome analysis via cytometric bead array. RESULTS GBM pericytes show decreased expression of CX3CL1, both basally and following IL-1β treatment, via qRT-PCR and CBA. In contrast, increased gene expression and secretion of IL-6 and IL-8 by GBM pericytes were observed. GBM pericytes also basally express CD90 and anti-inflammatory molecule PD-L1 compared to their normal counterparts. In terms of activated pathways, basal SMAD2/3 activation is increased in GBM pericytes, while also showing greater activation following treatment with IL-1β, IFN-γ but not TNFα. C/EBPδ is activated and translocated following inflammatory stimulation; however, shows localised expression within the cytoplasm only observed in GBM pericytes. CONCLUSION This immunological screen of GBM pericytes highlights them as key players in the establishment of the tumour microenvironment. With data suggesting the activation of pathways such as the SMAD2/3 pathway in an unconventional manner, it suggests the potential for pericytes to manipulate pathways towards a more immunosuppressive outcome. Further immune characterisation of such cells is required to fully understand how they might contribute to the immunosuppressive nature of GBM.

Author(s):  
Martin Raemond Brondial Mallabo ◽  
Mary Jho - Anne T. Corpuz ◽  
Reginald B. Salonga ◽  
Ross D. Vasquez

Purpose: Sulfated polysaccharide (SP) from Codium species has been reported for its anti-inflammatory activities. However, the effect of SP from C. edule on allergic responses has not been studied. The study was conducted to determine the effect of SP (F1) from C. edule on allergic contact dermatitis (ACD) induced by 2,4-dinitrofluorobenzene (DNFB) in female BALB/c mice. Methods: F1 was isolated using DEAE Sepharose Gel Chromatography and chemically identified by LC-MS analyses. The effects of F1 on changes in ear thickness, allergic responses, and histology were evaluated. The effects of F1 on the production of inflammatory cytokines IFN- γ and TNF-α in serum were also quantified and compared with standard prednisolone therapy. Results: F1 was identified as a heteropolysaccharide with β-D-galactans and β-L-arabinans units. F1 was non-toxic at 2000 mg/kg. Administration of F1 in DNFB-challenged mice significantly suppressed the increase in ear thickness, erythema, desquamation, and proliferation of inflammatory cells. F1 significantly decreased the production of inflammatory markers, IFN- γ and TNF-α in a dose-dependent manner when compared to the untreated group (p<0.05). Conclusion: Results suggest that F1 from C. edule is a bioactive sulfated heteropolysaccharide with anti-inflammatory activity and might be a valuable candidate molecule for the treatment of allergic diseases such as ACD.


2021 ◽  
Vol 22 (8) ◽  
pp. 3991
Author(s):  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
Marika Cordaro ◽  
Alessio Filippo Peritore ◽  
Tiziana Genovese ◽  
...  

Endometriosis is a common gynecological disease. Here, we aimed to investigate the anti-fibrotic, anti-inflammatory, and anti-oxidative role of the methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO-Me) on endometriosis. An endometriosis rat model was constructed by intraperitoneally injecting recipient rats with an equivalent of tissue from the uterus of a donor animal. Endometriosis was allowed to develop for seven days. CDDO-Me was administered on the 7th day and for the next 7 days. On day 14, rats were sacrificed, and peritoneal fluid and endometriotic implants were collected. CDDO-Me displayed antioxidant activity by activating the Nfr2 pathway and the expression of antioxidant mediators such as NQO-1 and HO-1. Moreover, it reduced lipid peroxidation and increased glutathione (GSH) levels and superoxide dismutase (SOD) activity. CDDO-Me also showed anti-inflammatory activity by decreasing the expression of pro-inflammatory cytokines in peritoneal fluids and NFkB activation. It, in turn, reduced cyclooxygenase-2 (COX-2) expression in the endometriotic loci and prostaglandin E2 (PGE2) levels in the peritoneal fluids, leading to increased apoptosis and reduced angiogenesis. The reduced oxidative stress and pro-inflammatory microenvironment decreased implants diameter, area, and volume. In particular, CDDO-Me administration reduced the histopathological signs of endometriosis and inflammatory cells recruitment into the lesions, as shown by toluidine blue staining and myeloperoxidase (MPO) activity. CDDO-Me strongly suppressed α-SMA and fibronectin expression and collagen deposition, reducing endometriosis-associated fibrosis. In conclusion, CDDO-Me treatment resulted in a coordinated and effective suppression of endometriosis by modulating the Nrf2 and NFkB pathways.


2020 ◽  
Author(s):  
Salam Jbeili ◽  
Mohamad Rima ◽  
Abdul Rahman Annous ◽  
Abdo Ibrahim Berro ◽  
Ziad Fajloun ◽  
...  

Abstract Introduction: Gentian Violet (GV) is a triphenylmethane industrial dye that is known for its antibacterial, antiviral, anti-helminthic and anti-tumor effects. Although many studies focused on determining the biological and pharmacological applications of GV, its exact effect on the immune response has not been elucidated yet.Methods: In this study, we investigate the immunomodulatory effects of GV in BALB/c mice after intraperitoneal injection of the dye by assessing cytokines levels in the spleen.Results: Our data show that GV-treated mice have decreased level of proinflammatory cytokines (IL-1β and TNF-α) and increased level of anti-inflammatory cytokines (IL-4) in their spleens. In addition, IFN-γ that can modulate pro-inflammatory cytokine production was upregulated in GV-treated mice. Conclusion: Together, these findings suggest an anti-inflammatory activity of GV that warrant further studies investigating the potential of GV in immunotherapy.


2021 ◽  
Author(s):  
Maria Luisa Barcena ◽  
Misael Estepa ◽  
Louis Marx ◽  
Anne Breiter ◽  
Natalie Haritonow ◽  
...  

Abstract Background: Studies have shown that lipoproteins, including LDL, VLDL, and ApoE2 have an impact on macrophage polarization, important to atherosclerosis progression. PCSK9 is a key mediator regulating the expression of lipoprotein receptors. The present study investigates the effect of the VLDL/VLDL-R axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network.Methods: Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from PBMC were treated with LPS/IFN-γ to induce a pro-inflammatory phenotype or with IL-4 /IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments including VLDL, LDL, PCSK9, PCSK9i, anti-LDL-R; PMA and TSP-1.Results: LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators e.g., TNF-α, CD80, and IL-1β. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of the M1-markers e.g., TNF-α, CD80, and IL-1β. These effects were eliminated by PCSK9 and restored by co-incubation with a PCSK9i. Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i.Conclusion: VLDL promotes macrophage differentiation towards the anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory switch, thereby promoting a pro-inflammatory phenotype. Thus, anti-PCSK9 therapies may exert pro-inflammatory suppression within the vessel wall.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengchao Zhang ◽  
Jiankai Fang ◽  
Zhanhong Liu ◽  
Pengbo Hou ◽  
Lijuan Cao ◽  
...  

Abstract Background Muscle stem cells (MuSCs) are absolutely required for the formation, repair, and regeneration of skeletal muscle tissue. Increasing evidence demonstrated that tissue stem cells, especially mesenchymal stem cells (MSCs), can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory properties. Human mesenchymal stem cells (hMSCs) treated with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were reported to possess anti-inflammatory functions by producing TNF-stimulated gene 6 (TSG-6). However, whether human muscle stem cells (hMuSCs) also possess TSG-6 mediated anti-inflammatory functions has not been explored. Methods The ulcerative colitis mouse model was established by subjecting mice to dextran sulfate sodium (DSS) in drinking water for 7 days. hMuSCs were pretreated with IFN-γ and TNF-α for 48 h and were then transplanted intravenously at day 2 of DSS administration. Body weights were monitored daily. Indoleamine 2,3-dioxygenase (IDO) and TSG-6 in hMuSCs were knocked down with short hairpin RNA (shRNA) and small interfering RNA (siRNA), respectively. Colon tissues were collected for length measurement and histopathological examination. The serum level of IL-6 in mice was measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blot analysis were performed to evaluate gene expression. Results hMuSCs treated with inflammatory factors significantly ameliorated inflammatory bowel disease (IBD) symptoms. IDO and TSG-6 were greatly upregulated and required for the beneficial effects of hMuSCs on IBD. Mechanistically, the tryptophan metabolites, kynurenine (KYN) or kynurenic acid (KYNA) produced by IDO, augmented the expression of TSG-6 through activating their common receptor aryl hydrocarbon receptor (AHR). Conclusion Inflammatory cytokines-treated hMuSCs can alleviate DSS-induced colitis through IDO-mediated TSG-6 production.


2021 ◽  
Vol 12 (1) ◽  
pp. 58-66
Author(s):  
Doan Nguyen ◽  
Vi Tran ◽  
Alireza Shirazian ◽  
Cruz Velasco-Gonzalez ◽  
Ifeanyi Iwuchukwu

Abstract Background Neuroinflammation is important in the pathophysiology of spontaneous intracerebral hemorrhage (ICH) and peripheral inflammatory cells play a role in the clinical evolution and outcome. Methodology Blood samples from ICH patients (n = 20) were collected at admission for 5 consecutive days for peripheral blood mononuclear cells (PBMCs). Frozen PBMCs were used for real-time PCR using Taqman probes (NFKB1, SOD1, PPARG, IL10, NFE2L2, and REL) and normalized to GAPDH. Data on hospital length of stay and modified Rankin score (MRS) were collected with 90-day MRS ≤ 3 as favorable outcome. Statistical analysis of clinical characteristics to temporal gene expression from early to delayed timepoints was compared for MRS groups (favorable vs unfavorable) and hematoma volume. Principle findings and results IL10, SOD1, and REL expression were significantly higher at delayed timepoints in PBMCs of ICH patients with favorable outcome. PPARG and REL increased between timepoints in patients with favorable outcome. NFKB1 expression was not sustained, but significantly decreased from higher levels at early onset in patients with unfavorable outcome. IL10 expression showed a negative correlation in patients with high hematoma volume (>30 mL). Conclusions and significance Anti-inflammatory, pro-survival regulators were highly expressed at delayed time points in ICH patients with a favorable outcome, and IL10 expression showed a negative correlation to high hematoma volume.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shuxia Wang ◽  
Shuhang Xu ◽  
Jing Zhou ◽  
Li Zhang ◽  
Xiaodong Mao ◽  
...  

Abstract Background Macrophages are indispensable regulators of inflammatory responses. Macrophage polarisation and their secreted inflammatory factors have an association with the outcome of inflammation. Luteolin, a flavonoid abundant in plants, has anti-inflammatory activity, but whether luteolin can manipulate M1/M2 polarisation of bone marrow-derived macrophages (BMDMs) to suppress inflammation is still unclear. This study aimed to observe the effects of luteolin on the polarity of BMDMs derived from C57BL/6 mice and the expression of inflammatory factors, to explore the mechanism by which luteolin regulates the BMDM polarity. Methods M1-polarised BMDMs were induced by lipopolysaccharide (LPS) + interferon (IFN)-γ and M2-polarisation were stimulated with interleukin (IL)-4. BMDM morphology and phagocytosis were observed by laser confocal microscopy; levels of BMDM differentiation and cluster of differentiation (CD)11c or CD206 on the membrane surface were assessed by flow cytometry (FCM); mRNA and protein levels of M1/M2-type inflammatory factors were performed by qPCR and ELISA, respectively; and the expression of p-STAT1 and p-STAT6 protein pathways was detected by Western-blotting. Results The isolated mouse bone marrow cells were successfully differentiated into BMDMs, LPS + IFN-γ induced BMDM M1-phenotype polarisation, and IL-4 induced M2-phenotype polarisation. After M1-polarised BMDMs were treated with luteolin, the phagocytosis of M1-polarized BMDMs was reduced, and the M1-type pro-inflammatory factors including IL-6, tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD86 were downregulated while the M2-type anti-inflammatory factors including IL-10, IL-13, found in inflammatory zone (FIZZ)1, Arginase (Arg)1 and CD206 were upregulated. Additionally, the expression of M1-type surface marker CD11c decreased. Nevertheless, the M2-type marker CD206 increased; and the levels of inflammatory signalling proteins phosphorylated signal transducer and activator of transcription (p-STAT)1 and p-STAT6 were attenuated and enhanced, respectively. Conclusions Our study suggests that luteolin may transform BMDM polarity through p-STAT1/6 to regulate the expression of inflammatory mediators, thereby inhibiting inflammation. Naturally occurring luteolin holds promise as an anti-inflammatory and immunomodulatory agent.


2021 ◽  
Vol 11 (3) ◽  
pp. 1130
Author(s):  
Chih-Wei Chiu ◽  
Chih-Hao Yang ◽  
Jie-Heng Tsai ◽  
Cheng-Ying Hsieh ◽  
Shih-Yi Huang

Inflammation of the arterial wall is critical to atherosclerosis pathogenesis. The switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells is essential in the exacerbation of vascular inflammation. Platonin, a cyanine photosensitizing dye, exhibits protective effects in sepsis, trauma, and acute ischemic stroke through its anti-inflammatory capacity in macrophages. The present study investigated the effects and underlying mechanisms of platonin in inflammatory VSMCs. Pretreatment with platonin suppressed the expression of inducible nitric oxide synthetase and mature interleukin-1β but not that of monocyte chemoattractant protein-1 (MCP-1) in VSMCs stimulated by a combination of lipopolysaccharide and interferon-γ (LPS/IFN-γ). Furthermore, platonin inhibited LPS/IFN-γ-induced Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation though the direct reduction of p65Ser536 phosphorylation but not the restoration of Inhibitor of nuclear factor kappa B (IκBα) degradation in VSMCs. However, platonin inhibited Oxidized low-density lipoprotein (ox-LDL)-induced MCP-1 production, possibly through the attenuation of Activator protein 1 (AP-1) binding activity and C-Jun N-terminal kinases ½ (JNK1/2) phosphorylation. Platonin also lowered lipid drop accumulation in VSMCs in Oil red O staining assay. The results collectively indicated that platonin has a vascular protective property with potent anti-inflammatory effects in VSMCs. In conclusion, platonin should be a potential for treating vascular inflammatory diseases such as atherosclerosis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 143 ◽  
Author(s):  
Jingnan Zhao

Gold nanocages (AuNCs) are biocompatible and porous nanogold particles that have been widely used in biomedical fields. In this study, hyaluronic acid (HA) and peptide- modified gold nanocages (HA-AuNCs/T/P) loaded with 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) were prepared to investigate their potential for combating inflammation. TPCA-1 was released from AuNCs, intracellularly when HA was hydrolyzed by hyaluronidase. HA-AuNCs/T/P show a much higher intracellular uptake than AuNCs/T/P, and exhibit a much higher efficacy on the suppression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) than free TPCA-1, suggesting great improvement to the anti-inflammatory efficacy of TPCA-1 through the application of AuNCs. HA-AuNCs/T/P can also reduce the production of reactive oxygen species in inflammatory cells. This study suggests that HA-AuNCs/T/P may be potential agents for anti-inflammatory treatment, and are worthy of further investigation.


Sign in / Sign up

Export Citation Format

Share Document