scholarly journals Transcription initiation defines kinetoplast RNA boundaries

2018 ◽  
Author(s):  
François M. Sement ◽  
Takuma Suematsu ◽  
Liye Zhang ◽  
Tian Yu ◽  
Lan Huang ◽  
...  

AbstractMitochondrial genomes are often transcribed into polycistronic primary RNAs punctuated by tRNAs whose excision defines mature RNA boundaries. Although kinetoplast DNA lacks tRNA genes, it is commonly held that monophosphorylated 5′-ends of functional molecules typify precursor partitioning by an unknown endonuclease. To the contrary, we demonstrate that in Trypanosoma brucei individual mRNAs and rRNAs are independently synthesized as 3′ extended precursors. The transcription-defined 5′ terminus is converted into monophosphorylated state by the 5′ pyrophosphohydrolase complex, termed PPsome, which is activated by RNA editing substrate binding complex (RESC). Most guide RNAs lack PPsome recognition sites and, therefore, remain triphosphorylated. We provide evidence that both 5′ pyrophosphate removal and 3′ adenylation are essential for mRNA stabilization. Furthermore, we uncover a mechanism by which antisense RNA-controlled 3′-5′ exonucleolytic trimming defines mRNA 3′-end. We conclude that mitochondrial mRNAs and rRNAs are transcribed and processed as insulated units irrespective of their genomic location.SignificanceIt is commonly held that in trypanosomes both mitochondrial DNA strands are transcribed into polycistronic precursors. These primary RNAs are presumably partitioned into individual pre-mRNAs by a “cryptic” endonuclease. We challenged the polycistronic transcription/ endonuclease model after revealing precursor processing by 3′-5′ degradation. This work demonstrates individual transcription of each gene and mRNA 5′-end definition by the first incorporated nucleotide triphosphate. We have uncovered the stabilizing role of 5′ triphosphate to monophosphate conversion and identified a protein complex responsible for this reaction. We have discovered antisense noncoding RNA originating near mRNA 3′ end and showed that a duplex formation modulates exonuclease activity to delimit the mature 3′ end. Collectively, our findings reveal mechanisms by which transcription defines both mRNA termini.

2018 ◽  
Vol 115 (44) ◽  
pp. E10323-E10332 ◽  
Author(s):  
François M. Sement ◽  
Takuma Suematsu ◽  
Liye Zhang ◽  
Tian Yu ◽  
Lan Huang ◽  
...  

Mitochondrial genomes are often transcribed into polycistronic RNAs punctuated by tRNAs whose excision defines mature RNA boundaries. Although kinetoplast DNA lacks tRNA genes, it is commonly held that in Trypanosoma brucei the monophosphorylated 5′ ends of functional molecules typify precursor partitioning by an unknown endonuclease. On the contrary, we demonstrate that individual mRNAs and rRNAs are independently synthesized as 3′-extended precursors. The transcription-defined 5′ terminus is converted into a monophosphorylated state by the pyrophosphohydrolase complex, termed the “PPsome.” Composed of the MERS1 NUDIX enzyme, the MERS2 pentatricopeptide repeat RNA-binding subunit, and MERS3 polypeptide, the PPsome binds to specific sequences near mRNA 5′ termini. Most guide RNAs lack PPsome-recognition sites and remain triphosphorylated. The RNA-editing substrate-binding complex stimulates MERS1 pyrophosphohydrolase activity and enables an interaction between the PPsome and the polyadenylation machinery. We provide evidence that both 5′ pyrophosphate removal and 3′ adenylation are essential for mRNA stabilization. Furthermore, we uncover a mechanism by which antisense RNA-controlled 3′–5′ exonucleolytic trimming defines the mRNA 3′ end before adenylation. We conclude that mitochondrial mRNAs and rRNAs are transcribed and processed as insulated units irrespective of their genomic location.


2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zimo Zhou ◽  
Mohammad Showkat Hossain ◽  
Da Liu

AbstractOsteogenic differentiation and bone regeneration are complex processes involving multiple genes and multiple steps. In this review, we summarize the effects of the long noncoding RNA (lncRNA) H19 on osteogenic differentiation.Osteogenic differentiation includes matrix secretion and calcium mineralization as hallmarks of osteoblast differentiation and the absorption of calcium and phosphorus as hallmarks of osteoclast differentiation. Mesenchymal stem cells (MSCs) form osteoprogenitor cells, pre-osteoblasts, mature osteoblasts, and osteocytes through induction and differentiation. lncRNAs regulate the expression of coding genes and play essential roles in osteogenic differentiation and bone regeneration. The lncRNA H19 is known to have vital roles in osteogenic induction.This review highlights the role of H19 as a novel target for osteogenic differentiation and the promotion of bone regeneration.


2002 ◽  
Vol 184 (4) ◽  
pp. 889-894 ◽  
Author(s):  
Yi Wei ◽  
David H. Bechhofer

ABSTRACT The tet(L) gene of Bacillus subtilis confers low-level tetracycline (Tc) resistance. Previous work examining the >20-fold-inducible expression of tet(L) by Tc demonstrated a 12-fold translational induction. Here we show that the other component of tet(L) induction is at the level of mRNA stabilization. Addition of a subinhibitory concentration of Tc results in a two- to threefold increase in tet(L) mRNA stability. Using a plasmid-borne derivative of tet(L) with a large in-frame deletion of the coding sequence, the mechanism of Tc-induced stability was explored by measuring the decay of tet(L) mRNAs carrying specific mutations in the leader region. The results of these experiments, as well as experiments with a B. subtilis strain that is resistant to Tc due to a mutation in the ribosomal S10 protein, suggest different mechanisms for the effects of Tc on translation and on mRNA stability. The key role of the 5" end in determining mRNA stability was confirmed in these experiments. Surprisingly, the stability of several other B. subtilis mRNAs was also induced by Tc, which indicates that addition of Tc may result in a general stabilization of mRNA.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 13-14
Author(s):  
Anna K Goldkamp ◽  
Yahan Li ◽  
Rocio M Rivera ◽  
Darren Hagen

Abstract Differentially methylated regions (DMRs) have been associated with Large Offspring Syndrome (LOS) in cattle. Some DMRs overlap transfer RNA (tRNA) gene clusters, potentially altering tRNA expression patterns uniquely by treatment group or tissue type. tRNAs are classified as adapter molecules, serving a key role in the translational machinery implementing genetic code. Variation in tRNA expression has been identified in several disease pathways suggesting an important role in the regulation of biological processes. tRNAs also serve as a source of small non-coding RNAs. To better understand the role of tRNA expression in LOS, total RNA was extracted from skeletal muscle and liver of 105-day fetuses and the tRNAs sequenced. Although there are nearly three times the number of tRNA genes in cattle as compared to human (1,659 vs 597), there is a shared occurrence of transcriptionally silent tRNA genes in both species. This study detected expression of 474 and 487 bovine tRNA genes in skeletal muscle and liver, respectively, with the remainder being very lowly expressed or transcriptionally silent. Eleven tRNA isodecoders are transcriptionally silent in both skeletal muscle and liver and another isodecoder is silent in the liver (SerGGA). Further, the highest expressed isodecoders differ by treatment or tissue type with roughly half correlated to codon frequency. While the absence of certain isodecoders may be relieved by wobble base pairing, missing tRNA species could likely increase the likelihood of mistranslation or mRNA degradation. Differential expression of tissue- and treatment-specific tRNA genes may modulate translation during protein homeostasis or cellular stress, altering regulatory products targeting genes associated with overgrowth in skeletal muscle and/or tumor development in the liver of LOS individuals.


Author(s):  
Ashutosh Singh ◽  
Ashutosh Kumar Singh ◽  
Rajanish Giri ◽  
Dhruv Kumar ◽  
Rohit Sharma ◽  
...  

MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.


1989 ◽  
Vol 9 (2) ◽  
pp. 678-691
Author(s):  
R A Akins ◽  
R L Kelley ◽  
A M Lambowitz

The Mauriceville and Varkud mitochondrial plasmids of Neurospora spp. are closely related, closed-circular DNAs (3.6 and 3.7 kilobases, respectively) whose nucleotide sequences and genetic organization suggest relationships to mitochondrial introns and retroelements. We have characterized nine suppressive mutants of these plasmids that outcompete mitochondrial DNA and lead to impaired growth. All nine suppressive plasmids contain small insertions, corresponding to or including a mitochondrial tRNA (tRNATrp, tRNAGly, or tRNAVal) or a tRNA-like sequence. The insertions are located at the position corresponding to the 5' end of the major plasmid transcript or 24 nucleotides downstream near a cognate of the sequence at the major 5' RNA end. The structure of the suppressive plasmids suggests that the tRNAs were inserted via an RNA intermediate. The 3' end of the wild-type plasmid transcript can itself be folded into a secondary structure which has tRNA-like characteristics, similar to the tRNA-like structures at the 3' ends of plant viral RNAs. This structure may play a role in replication of the plasmids by reverse transcription. Major transcripts of the suppressive plasmids begin at the 5' end of the inserted mitochondrial tRNA sequence and are present in 25- to 100-fold-higher concentrations than are transcripts of wild-type plasmids. Mapping of 5' RNA ends within the inserted mtDNA sequences identifies a short consensus sequence (PuNPuAG) which is present at the 5' ends of a subset of mitochondrial tRNA genes. This sequence, together with sequences immediately upstream in the plasmids, forms a longer consensus sequence, which is similar to sequences at transcription initiation sites in Neurospora mitochondrial DNA. The suppressive behavior of the plasmids is likely to be directly related to the insertion of tRNAs leading to overproduction of plasmid transcripts.


2018 ◽  
Vol 13 ◽  
pp. 580-589 ◽  
Author(s):  
Ling-Min Liao ◽  
Feng-Hao Zhang ◽  
Gong-Ji Yao ◽  
Su-Feng Ai ◽  
Min Zheng ◽  
...  

2000 ◽  
Vol 182 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Christina Wilson Bowers ◽  
Andrea McCracken ◽  
Alicia J. Dombroski

ABSTRACT Amino acid substitutions in Escherichia coliς70 were generated and characterized in an analysis of the role of region 1.1 in transcription initiation. Several acidic and conserved residues are tolerant of substitution. However, replacement of aspartic acid 61 with alanine results in inactivity caused by structural and functional thermolability.


Sign in / Sign up

Export Citation Format

Share Document