Light, temperature, dry after-ripening and salt stress effects on seed germination ofPhleum sardoum(Hackel) Hackel

2013 ◽  
Vol 29 (3) ◽  
pp. 300-305 ◽  
Author(s):  
Andrea Santo ◽  
Efisio Mattana ◽  
Luca Frigau ◽  
Gianluigi Bacchetta
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1303
Author(s):  
Badar Jahan ◽  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Zebus Sehar ◽  
Asim Masood ◽  
...  

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg−1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 μL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


Weed Science ◽  
2021 ◽  
pp. 1-27
Author(s):  
Aseemjot Singh ◽  
Gulshan Mahajan ◽  
Bhagirath Singh Chauhan

Abstract Wild mustard (Sinapis arvensis L.) is a widespread weed of the southeastern cropping region of Australia. Seed germination ecology of S. arvensis populations selected from different climatic regions may differ due to adaptative traits. Experiments were conducted to evaluate the effects of temperature, light, radiant heat, soil moisture, salt concentration, and burial depth on seed germination and seedling emergence of two [Queensland (Qld) population: tropical region; and Victoria (Vic) population: temperate region] populations of S. arvensis. Both populations germinated over a wide range of day/night (12 h/12 h) temperatures (15/5 to 35/25 C), and had the highest germination at 30/20 C. Under complete darkness, the Qld population (61%) had higher germination than the Vic population (21%); however, under the light/dark regime, both populations had similar germination (78 to 86%). At 100 C pretreatment for 5 min, the Qld population (44%) had higher germination than the Vic population (13%). Germination of both populations was nil when given pretreatment at 150 and 200 C. The Vic population was found tolerant to high osmotic and salt stress compared with the Qld population. At an osmotic potential of −0.4 MPa, germination of Qld and Vic populations was reduced by 85% and 42%, respectively, compared with their respective control. At 40, 80, and 160 mM sodium chloride, germination of the Qld population was lower than the Vic population. Averaged over the populations, seedling emergence was highest (52%) from a burial depth of 1 cm and was nil from 8 cm depth. Differential germination behaviors of both populations to temperature, light, radiant heat, water stress, and salt stress suggests that populations of S. arvensis may have undergone differential adaptation. Knowledge gained from this study will assist in developing suitable control measures for this weed species to reduce the soil seedbank.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1504
Author(s):  
Elsayed Mohamed ◽  
Ahmed M. M. A. Kasem ◽  
Adil A. Gobouri ◽  
Amr Elkelish ◽  
Ehab Azab

Zygophyllum coccineum is a facultative halophyte widely distributed in desert wadis and coastal areas in Egypt. Here, we investigated the influences of maternal habitat on tolerance to salt stress during germination and seedling growth under salinity (0, 100, 200, 400 mM NaCl) of three populations of Z. coccineum from a saline habitat (Manzala coast) and non-saline habitats (Wadi Houf and Wadi Asyuti). In all populations, seed germination started within two days in distilled water but germination indices were reduced significantly with salt level increase. Germination percentage was not significantly greater for seeds from non-saline habitats than for those from the saline habitat under moderate salinity (100, 200 mM NaCl), but only seeds from the saline habitat were able to germinate under high salt stress (400 mM NaCl). Germination recovery was greater for seeds from the saline habitat compared to non-saline populations. At the seedling level, the Manzala population showed the lowest inhibition of shoot length and leaf area under salinity (200 and 400 mM NaCl) compared to non-saline habitats. In the same context, the Manzala population had the maximum chlorophyll a content, superoxide dismutase and esterase activities under salinity compared to non-saline populations, but salinity had a non-significant effect on chlorophyll b between the three populations. Carotenoids were enhanced with the increase of salt levels in all populations. These results suggest the salt tolerance of Manzala population is derived from maternal salinity and adaptive plasticity of this species may play an important role in the wide distribution of Z. coccineum.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Jan Ellenberger ◽  
Nils Siefen ◽  
Priska Krefting ◽  
Jan-Bernd Schulze Lutum ◽  
Daniel Pfarr ◽  
...  

The green biomass of horticultural plants contains valuable secondary metabolites (SM), which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4–5 W/m2; UVB 10–14 W/m2 for 3 h per day), or a combination of both stressors. Plant age during the trials was 32–48 days. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents of secondary metabolites were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on above ground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights into the ontogenetical effects at the leaf level and temporal development of SM contents. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: r2 = 0.46–0.66; Graveobioside A: r2 = 0.51–0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress should be considered as a tool for enriching plant leaves with valuable SM. Effects on the performance of plants throughout a complete production cycle should be evaluated in future trials. All data is available online.


2017 ◽  
Vol 109 (1) ◽  
pp. 89 ◽  
Author(s):  
Soheil Karimi ◽  
Saeid ESHGHI ◽  
Saeid KARIMI ◽  
Saman HASAN-NEZHADIAN

<p>This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM), after exposing the seeds to weak (15 mT) or strong (150 mT) magnetic fields (MF) for different durations (0, 6, 12, and 24 hours). Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H<sub>2</sub>O<sub>2</sub> accumulation and membrane thermostability (MTI) was found after MF treatments, which revealed that MF primed the plant for salinity by H<sub>2</sub>O<sub>2</sub> signaling. However, over-accumulation of H<sub>2</sub>O<sub>2</sub> after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.</p>


Sign in / Sign up

Export Citation Format

Share Document