Direct Comparison Between a Variety of Microchannels: Part 2 — Experimental Description and Flow Friction Measurement

Author(s):  
Cormac Eason ◽  
Tara Dalton ◽  
Cian O’Mathu´na ◽  
Mark Davies ◽  
Orla Slattery

Part 1 of this paper (Eason et al 2004) investigates the manufacturing of a variety of microchannels, produced by wet and dry etching in silicon, as well as precision mechanical sawing in silicon and thermoset plastic. This paper describes the experimental equipment and methods used to measure the pressure flow characteristics of the manufactured channels. A custom designed test system has been built in order to test each sample using the same inlet and outlet manifolds, pressure tappings, pumping system and instrumentation. The pressure drop across each set of channels was measured using an inductive pressure transducer. The mass flow rate through the system is measured by weighing the flow from the system in a given time. The measured pressure flow behaviour was compared with theoretical values as calculated from macro scale theory. Channel dimensions used for this calculation are as measured in part 1 of this paper. Error analysis was then carried out in order to determine the overall accuracy of the experimental work and determine whether any deviation from theoretical values is of experimental significance. This step is essential in any attempt to determine whether microchannel flows are indeed different to macro scale flows in a fundamental way. The deep reactive ion etched (DRIE) channels show the most significant lack of correlation with theoretical predictions. Compensation must be introduced to deal with the difference in cross section between the perfectly rectangular channels used for the theoretical prediction and the actual cross section of the channels.

Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Author(s):  
Cormac Eason ◽  
Tara Dalton ◽  
Cian O’Mathu´na ◽  
Mark Davies ◽  
Orla Slattery

This paper is the first part of a two part study into the pressure-flow characteristics of a range of microchannels measured over a range of typical Reynolds numbers. Here the manufacture of the channels and their resulting quality is addressed. The target application is silicon cooling. Wet Etching, Deep Reactive Ion Etching (DRIE) and Precision Sawing have been used to create microchannels in silicon and thermoset plastic. Anodic bonding has been used to bond covers onto the DRIE and Wet Etched channels. Wet etching a (100) silicon wafer using a KOH solution produced trapezoidal channels of width 577 μm and height 413μm. DRIE using the Bosch process produced rectangular channels in (100) silicon of width 304μm and height 332μm. Mechanical sawing using a Disco Dicing Saw produced near rectangular channels in both silicon and plastic. The silicon channels were 52μm wide and 423μm deep, and the plastic channels were 203μm wide by 344 or 382μm deep. Channel dimensions were measured using a scanning electron microscope. Silicon was the main material chosen, since it is possible to cut cooling channels directly into one side of a silicon device, while the electronic parts are deposited on the other, giving effective cooling with minimal thermal resistance. The plastics chosen are commonly used to encapsulate electronic packages and will also be in close proximity to the heat producing regions of the device it protects. Embossed channels on a plastic encapsulant also potentially offer a low cost mass producible means of cooling electronic devices with a low overall thermal resistance. A glass cover was anodically bonded over the silicon channels to prevent channel to channel leakage and provide optical access. The plastic channels were also covered by a glass slide, bonded in position using SU8 Photoresist spun on the glass. This paper demonstrates the feasibility of producing relatively large microchannels in two materials by three methods. Part two of this paper will describe the modular flow test system and analyze the flow friction through the channels.


Author(s):  
Stefano Lenci ◽  
Giuseppe Rega ◽  
Laura Ruzziconi

The dynamical integrity, a new concept proposed by J.M.T. Thompson, and developed by the authors, is used to interpret experimental results. After reviewing the main issues involved in this analysis, including the proposal of a new integrity measure able to capture in an easy way the safe part of basins, attention is dedicated to two experiments, a rotating pendulum and a micro-electro-mechanical system, where the theoretical predictions are not fulfilled. These mechanical systems, the former at the macro-scale and the latter at the micro-scale, permit a comparative analysis of different mechanical and dynamical behaviours. The fact that in both cases the dynamical integrity permits one to justify the difference between experimental and theoretical results, which is the main achievement of this paper, shows the effectiveness of this new approach and suggests its use in practical situations. The men of experiment are like the ant, they only collect and use; the reasoners resemble spiders, who make cobwebs out of their own substance. But the bee takes the middle course: it gathers its material from the flowers of the garden and field, but transforms and digests it by a power of its own. Not unlike this is the true business of philosophy (science); for it neither relies solely or chiefly on the powers of the mind, nor does it take the matter which it gathers from natural history and mechanical experiments and lay up in the memory whole, as it finds it, but lays it up in the understanding altered and digested. Therefore, from a closer and purer league between these two faculties, the experimental and the rational (such as has never been made), much may be hoped. (Francis Bacon 1561–1626) But are we sure of our observational facts? Scientific men are rather fond of saying pontifically that one ought to be quite sure of one's observational facts before embarking on theory. Fortunately those who give this advice do not practice what they preach. Observation and theory get on best when they are mixed together, both helping one another in the pursuit of truth. It is a good rule not to put overmuch confidence in a theory until it has been confirmed by observation. I hope I shall not shock the experimental physicists too much if I add that it is also a good rule not to put overmuch confidence in the observational results that are put forward until they have been confirmed by theory . (Arthur Stanley Eddington 1882–1944)


2009 ◽  
Vol 24 (02n03) ◽  
pp. 450-453
Author(s):  
◽  
T. SKORODKO ◽  
M. BASHKANOV ◽  
D. BOGOSLOWSKY ◽  
H. CALÉN ◽  
...  

The two-pion production in pp-collisions has been investigated in exclusive measurements from threshold up to Tp = 1.36 GeV . Total and differential cross sections have been obtained for the channels pnπ+π0, ppπ+π-, ppπ0π0 and also nnπ+π+. For intermediate incident energies Tp > 1 GeV , i.e. in the region, which is beyond the Roper excitation but at the onset of ΔΔ excitation the total ppπ0π0 cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the nnπ+π+ cross section is a factor of five larger than predicted. A model-unconstrained isospin decompostion of the cross section points to a significant contribution of an isospin 3/2 resonance other than the Δ(1232). As a possible candidate the Δ(1600) is discussed.


2014 ◽  
Vol 754 ◽  
pp. 232-249 ◽  
Author(s):  
Marius Ungarish ◽  
Catherine A. Mériaux ◽  
Cathy B. Kurz-Besson

AbstractWe investigate the motion of high-Reynolds-number gravity currents (GCs) in a horizontal channel of V-shaped cross-section combining lock-exchange experiments and a theoretical model. While all previously published experiments in V-shaped channels were performed with the special configuration of the full-depth lock, we present the first part-depth experiment results. A fixed volume of saline, that was initially of length $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}x_0$ and height $h_0$ in a lock and embedded in water of height $H_0$ in a long tank, was released from rest and the propagation was recorded over a distance of typically $ 30 x_0$. In all of the tested cases the current displays a slumping stage of constant speed $u_N$ over a significant distance $x_S$, followed by a self-similar stage up to the distance $x_V$, where transition to the viscous regime occurs. The new data and insights of this study elucidate the influence of the height ratio $H = H_0/h_0$ and of the initial Reynolds number ${\mathit{Re}}_0 = (g^{\prime }h_0)^{{{1/2}}} h_0/ \nu $, on the motion of the triangular GC; $g^{\prime }$ and $\nu $ are the reduced gravity and kinematic viscosity coefficient, respectively. We demonstrate that the speed of propagation $u_N$ scaled with $(g^{\prime } h_0)^{{{1/2}}}$ increases with $H$, while $x_S$ decreases with $H$, and $x_V \sim [{\mathit{Re}}_0(h_0/x_0)]^{{4/9}}$. The initial propagation in the triangle is 50 % more rapid than in a standard flat-bottom channel under similar conditions. Comparisons with theoretical predictions show good qualitative agreements and fair quantitative agreement; the major discrepancy is an overpredicted $u_N$, similar to that observed in the standard flat bottom case.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Giselle Nevares ◽  
Felipe Xavier ◽  
Luciana Gominho ◽  
Flávia Cavalcanti ◽  
Marcely Cassimiro ◽  
...  

This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n=20): the Reciproc (REC), WaveOne (WO), and HyFlex CM (HYF) groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer’s instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α=5%). All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p<0.05), and both systems produced a greater apical extrusion of debris than HyFlex CM (p<0.001). Cross section and motion influenced the results, despite tip standardization.


Author(s):  
Prasanna Hariharan ◽  
Rupak K. Banerjee

This study analyzes the pressure-flow characteristics during the peristaltic pumping of power law fluids in an axi-symmetric non-uniform distensible tube. The analyzed geometry is of a diverging shape that is common in several biological flow conduits, especially in mammals. Using the Fourier series, the dimensionless wall coordinates for sinusoidal, triangular, trapezoidal, and square wave forms are obtained to simulate wall movement. Equations expressing the pressure-flow rate relationship for different wall shapes are developed from the wave equation. Pressure-flow and velocity plots are obtained by solving the equations numerically. The results indicate that there is significant difference in pressure-flow relationship between Newtonian and non-Newtonian fluid. Also, the maximum flow rate can be achieved when the wall movement follows a square wave form.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ran Yuan ◽  
Dan Ma ◽  
Hongwei Zhang

A test system for water flow in granular gangue mineral was designed to study the flow characteristics by compaction treatment. With the increase of the compaction displacement, the porosity decreases and void in granular gangue becomes less. The main reason causing initial porosity decrease is that the void of larger size is filled with small particles. Permeability tends to decrease and non-Darcy flow factor increases under the compaction treatment. The change trend of flow characteristics shows twists and turns, which indicate that flow characteristics of granular gangue mineral are related to compaction level, grain size distribution, crushing, and fracture structure. During compaction, larger particles are crushed, which in turn causes the weight of smaller particles to increase, and water flow induces fine particles to migrate (weight loss); meanwhile, a sample with more weight of size (0–2.5 mm) has a higher amount of weight loss. Water seepage will cause the decrease of some chemical components, where SiO2 decreased the highest in these components; the components decreased are more likely locked at fragments rather than the defect of the minerals. The variation of the chemical components has an opposite trend when compared with permeability.


Author(s):  
Yan Sun ◽  
Lei Liu ◽  
Zhisheng Lv ◽  
Xingyue Zhangyang ◽  
Feifei Lu ◽  
...  

In the design of photocathode, the internal electric field could be formed due to the graded Al compositional [Formula: see text] nanostructure, which can improve the top surface emission probability of carriers. In this paper, [Formula: see text] nanostructure array photocathode composed of two sub-layers is presented. Based on the finite element method, the influence of graded geometrical parameters on their optoelectronic characteristics is investigated. The results show that when the thickness of the sublayer is equal, the difference of the Al composition between the two sublayers of nanostructure is larger, the sub-layers are less, and the quantum efficiency is higher. The light capture ability of the photocathode can be enhanced by increasing the thickness and the array spacing of the first sublayer. Compared with the hexagonal cross-section structure, the light trapping effect and spectral response of the circular cross-section structure are better.


Sign in / Sign up

Export Citation Format

Share Document