High Temperature SiC Power Module Packaging

Author(s):  
Brian Rowden ◽  
Alan Mantooth ◽  
Simon Ang ◽  
Alex Lostetter ◽  
Jared Hornberger ◽  
...  

Wide band gap semiconductors such as silicon carbide (SiC) provide the potential for significant advantages over traditional silicon alternatives including operation at high temperatures for extreme environments and applications, higher voltages reducing the number of devices required for high power applications, and higher switching frequencies to reduce the size of passive elements in the circuit and system. All of these attributes contribute to increased power density at the device and system levels, but the ability to exploit these properties requires complementary high temperature packaging techniques and materials to connect these semiconductors to the system around them. With increasing temperature, the balance of thermal, mechanical, and electrical properties for these packaging materials becomes critical to ensure low thermal impedance, high reliability, and minimal electrical losses. A primary requirement for module operation at high temperatures is a suitable high temperature attachment technology at both the device and module levels. This paper presents a transient liquid phase (TLP) attachment method implemented to provide lead-free bonding for a SiC half-bridge power module. This module was designed for continuous operation above 250 °C for use as a building block for multiple system level applications including hybrid electric vehicles, distributed energy resources, and multilevel converters. A silver-based TLP system was used to accommodate the device and substrate bond with a single TLP system compatible with the device metallurgy. A SiC power module was built using this system and electrically tested at a 250 °C continuous junction temperature. The TLP bonding process was demonstrated for multiple devices in parallel and large substrate bonding surfaces with traditional device and substrate metallization and no requirements for surface planarization or treatment. The results are presented in the paper.

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000144-000148
Author(s):  
Kevin M. Speer ◽  
Robin Schrader ◽  
David C. Sheridan ◽  
Andrew Lemmon ◽  
Jim Gafford ◽  
...  

This is the first high-temperature static and dynamic characterization of a half-bridge power module using 1200 V, 45 mΩ depletion-mode vertical JFETs. With only 36 mm2 of JFET area, the peak pulsed current is measured to be nearly 500 A at room temperature (transistors not saturated), decreasing to 230 A at 250 °C (transistors saturated). Total switching losses are less than 3.2 mJ from 25 °C to 250 °C and show negligible dependence on junction temperature. The achievement of this level of performance with such a small SiC transistor area is important, since die area directly impacts achievable module footprint (system-level power density and cost), device capacitance (switching losses), and semiconductor cost.


2011 ◽  
Vol 679-680 ◽  
pp. 726-729 ◽  
Author(s):  
David T. Clark ◽  
Ewan P. Ramsay ◽  
A.E. Murphy ◽  
Dave A. Smith ◽  
Robin. F. Thompson ◽  
...  

The wide band-gap of Silicon Carbide (SiC) makes it a material suitable for high temperature integrated circuits [1], potentially operating up to and beyond 450°C. This paper describes the development of a 15V SiC CMOS technology developed to operate at high temperatures, n and p-channel transistor and preliminary circuit performance over temperature achieved in this technology.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000289-000296 ◽  
Author(s):  
James D. Scofield ◽  
J. Neil Merrett ◽  
James Richmond ◽  
Anant Agarwal ◽  
Scott Leslie

A custom multi-chip power module packaging was designed to exploit the electrical and thermal performance potential of silicon carbide MOSFETs and JBS diodes. The dual thermo-mechanical package design was based on an aggressive 200°C ambient environmental requirement and 1200 V blocking and 100 A conduction ratings. A novel baseplate-free module design minimizes thermal impedance and the associated device junction temperature rise. In addition, the design incorporates a free-floating substrate configuration to minimize thermal expansion coefficient induced stresses between the substrate and case. Details of the module design and materials selection process will be discussed in addition to highlighting deficiencies in current packaging materials technologies when attempting to achieve high thermal cycle life reliability over an extended temperature range.


2020 ◽  
Vol 1004 ◽  
pp. 1045-1053
Author(s):  
Heng Lee ◽  
Chun Kai Liu ◽  
Tao Chih Chang

This paper focuses on how to define and integrate the system level and power module level with optimal conditions in SiC and Si-IGBT. To investigate the above situation, we compare the performance of SiC and Si-IGBT in power module and system level at different ambient temperatures. At the same maximum junction temperature 150°C and ambient temperature at 25°C and 80°C, it found that SiC type electrical resistance, maximum endurable current, and voltage could be better than the IGBT type power module above 20%. On the other hand, the simulation of three-phase inverter at different switching frequency such as 10kHz, 15kHz, 20kHz, 30kHz and it had been observed that the power loss of SiC inverter are 78% less for 10kHz switching frequency; 82% less for switching frequency at 15kHz; 85% less for 20kHz of switching frequency; 89% less for switching frequency at 30kHz in the Si-IGBT three-phase SPWM inverter at ambient temperature 80°C.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1083
Author(s):  
F. Jose Arques-Orobon ◽  
Manuel Vazquez ◽  
Neftali Nuñez

The lifetime of ultraviolet high-power light-emitting diodes (UV HP-LEDs) is an open issue due to their high current density, high temperature, and UV radiation. This work presents a reliability study and failure analysis of three high-temperature accelerated life tests (ALTs) for 13,500 h with 3 W commercial UV LEDs of 365 nm at a nominal current in two working conditions: continuous mode and cycled mode (30 s on/30 s off). Arrhenius–Weibull parameters were evaluated, and an equation to evaluate the lifetime (B50) at any junction temperature and other relevant lifetime functions is presented. The Arrhenius activation energy was 0.13 eV for the continuous mode and 0.20 eV for the cycled mode. The lifetime at 50% survival and 30% loss of optical power as a failure definition, working at Ta = 40 °C with a multi-fin heat sink in natural convection, was over 4480 h for the continuous mode and 19,814 h for the cycled mode. The need to add forced convection for HP-LED arrays to achieve these high-reliability values is evidenced. The main source of degradation is the semiconductor device, and the second is the encapsulation silicone break.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000175-000179
Author(s):  
Shashank Krishnamurthy ◽  
Stephen Savulak ◽  
Yang Wang

Abstract The emergence of wide band gap devices has pushed the boundaries of power converter operations and high power density applications. It is desirable to operate a power inverter at high switching frequencies to reduce passive filter weight and at high temperature to reduce the cooling system requirement. The paper describes the design and test of a power electronic inverter that converts a fixed input DC voltage to a variable voltage variable frequency three phase output. The component selection and design were constrained such that the inverter can operate at an ambient temperature of 170°C. The design of the key functional components such as the gate drive, power module, controller and communication will be discussed in the paper. Test results for the inverter at high temperature will also be presented.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000071-000073
Author(s):  
Thomas Krebs

Abstract High temperature electronics are used in a wide range of applications especially in extreme environments. There is a clear trend in aircrafts to have electrical controls mounted closer to the engine [1]. In cars more and more mechanical and hydraulic systems are replaced by electromechanical or mechatronic systems [2]. They are getting closer to high temperature environments like the engine or brakes. To its nature, avionic and automotive applications require predictable, highly reliable systems. Because elevated temperatures will increase the speed of material aging, the combination of high operation temperatures and high reliability is quite challenging. This applies in particular to interconnect materials such as solders or bonding wires.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000001-000006
Author(s):  
John R. Fraley ◽  
Alan Mantooth ◽  
Sajib Roy ◽  
Robert Murphree ◽  
Affan Abassi ◽  
...  

ABSTRACT As advanced natural gas power generation systems evolve, the thrust for increased efficiencies and reduced emissions results in increasingly harsh conditions inside the turbine environment. These high temperatures, pressures, and corrosive atmospheres result in accelerated rates of degradation, leading to failure of turbine materials and components. The University of Arkansas (UA) and Siemens, in collaboration with the DoE's National Energy Technology Laboratory (NETL), are developing a reliable and long-term monitoring capability in the turbine hot gas path in the form of novel ceramic-based thermocouples and integrated wide band gap instrumentation electronics that will contribute to the overall reliability of gas turbines. When equipped with better monitoring and controls, power plants can operate with increased fuel-burning efficiency, improved process dynamics and gas concentrations, and increased overall longevity of the power plant components. This will result in increased turbine availability and a reduction in outages and maintenance costs. One of the key aspects to driving forward turbine monitoring capability is the development of high temperature capable integrated circuit (IC) electronics. Previous papers have described 500 °C + electronics that were developed primarily from a combination of discrete single transistors combined with supporting high temperature passive components. While these circuits have been tested successfully in high temperature spin test environments, the move to an IC approach will greatly increase the performance and reliability of turbine monitoring systems. This program is developing such capability through the implementation of silicon carbide (SiC) based ICs, and this paper details the initial approach and early testing of the developed devices. This research represents an important step towards the realization of a field deployable high reliability turbine condition monitoring system.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000065-000072 ◽  
Author(s):  
Sayan Seal ◽  
Michael D. Glover ◽  
H. Alan Mantooth

Abstract This paper presents the plan and initial feasibility studies for an Integrated Wire Bondless Power Module (IWPM). Contemporary power modules are moving toward unprecedented levels of power density. The ball has been set rolling by a drastic reduction in the size of bare die power devices themselves owing to the advent of wide band gap semiconductors like silicon carbide (SiC) and gallium nitride (GaN). SiC has capabilities of operating at much higher temperatures and faster switching speeds as compared with its silicon counterparts, while being a fraction of their size. However, electronic packaging technology has not kept pace with these developments. High performance packaging technologies do exist in isolation, but there has been limited success in integrating these disparate efforts into a single high performance package of sufficient reliability. This paper lays the foundation for an electronic package which is designed to completely leverage the benefits of SiC semiconductor technology, with a focus on high reliability and fast switching capability.


Author(s):  
Hannes Greve ◽  
S. Ali Moeini ◽  
Patrick McCluskey ◽  
Shailesh Joshi

Transient Liquid Phase Sintering (TLPS) is a novel high temperature attach technology. It is of particular interest for application as a die attach in power electronic systems because of its high melting temperature and high thermal conductivity. TLPS joints formed from sinter pastes are comprised of metallic particles embedded in matrices of Intermetallic Compounds (IMCs). Compared to conventional solder attach, TLPS joints contain a considerably higher percentage of brittle IMCs. This raises the concern that TLPS joints are susceptible to brittle failure. In this paper we describe and analyze the cooling-induced formation of vertical cracks as a newly detected failure mechanism unique to TLPS joints. In a power module structure with a TLPS joint as interconnect between a power device and a Direct Bond Copper (DBC) substrate, cracks can form between the interface of the DBC and the TLPS joint when large voids are located in the proximity of the DBC. These cracks do not appear in regions with smaller voids. A method has been developed for the three-dimensional modeling of paste-based TLPS sinter joints that possess complex microstructures with heterogeneous distributions of metal particles and voids in IMC matrices. Thermo-mechanical simulations of the post-sintering cooling process have been performed and the influence of microstructure on the stress-response within the joint and at the joint interfaces have been characterized for three different material systems (Cu+Cu6Sn5, Cu+Cu3Sn, Ni+Ni3Sn4). The maximum principal stress within the assembly was found to be a poor indicator for prediction of vertical crack formation. In contrast, stress levels at the interface between the TLPS joint and the power substrate metallization are good indicators for this failure mechanism. Small voids lead to higher joint maximum principal stresses, but large voids induce higher interfacial stresses, which explain why the vertical cracking failure was only observed in joints with large voids.


Sign in / Sign up

Export Citation Format

Share Document