Soil-Pipeline Interaction Modeling and Assessment in Unstable Slopes

Author(s):  
Mauricio Pereira ◽  
Maria Fernanda Contreras ◽  
Carlos Vergara

Due to their length, oil and gas pipelines usually face different geotechnical problems along their routes (fast or slow, shallow or deep landslides) that impact the pipe integrity. In the current state of practice, this problems are analyzed considering the system as a beam on elastic foundation (Winkler type models), in which the loads on the pipe (e.g. internal pipe pressure and geostatic loads) are studied independently. A more realistic description of the soil-pipe interaction phenomenon that allows the prediction and explanation of the pipe failures found in the practice requires more advanced methodologies, involving the constitutive behavior of soil and pipe and the combined effect of different types of loads. In order to assess in a better way the soil-pipe interaction problem in landslides, this paper presents a 3D numerical model of the system, including the combined effect of different loads (such as landslide loads, geostatic loads and pipe internal pressure). The results obtained with the model were validated against real field measures in the OCENSA pipeline system and are expressed as soil displacement versus pipe strain relations. These relations are being used successfully in the evaluation of the behavior of the pipeline in unstable slopes, resulting in an important tool in the OCENSA pipeline integrity program.

Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


Author(s):  
Ranjana K. Mehta ◽  
S. Camille Peres ◽  
Linsey M. Steege ◽  
Jim R. Potvin ◽  
Mike Wahl ◽  
...  

Fatigue, often defined as a physiological state of reduced mental or physical performance capability resulting from sleep loss, circadian phase, or workload (physical or cognitive), has been implicated as a critical risk factor resulting in severe injuries and accidents. A great deal of research has been done into the identification, measurement, and management of fatigue, however it is still poorly understood. This may be due to the characteristics and variability of work conditions across different industries; for example, fatigue in manufacturing is largely related to physical demands, and in aviation fatigue is related to sleep and shift-work. This panel will comprise of academics and practitioners across manufacturing, healthcare, transportation, aviation, and oil and gas industries. Topics covered within each industry will include fatigue causes and consequences, existing fatigue monitoring/management practices, barriers to fatigue monitoring and management, and recommendations/discussions around improving the current state.


2021 ◽  
Author(s):  
Keith Bradford Critzer ◽  
Douglas Andrew Colbert

Abstract This paper presents a broad overview of the current state of the oil and gas engineering, procurement, and construction (EPC) contractor base following a period of challenging market conditions, subsequent owner/operator investment deferments, and the resulting financial impacts to the contractor base. These factors have caused a reduced tolerance for oil and gas volatility and a reduced appetite for lump sum contract risk. This paper identifies alternative contracting approaches to traditional competitively bid lump sum contracting. These alternative approaches result in a better understanding and assignment of risk between owner/operator and contractor, encourage continued participation by contractors in the oil and gas sector, and increase the probability of successful project outcomes.


Author(s):  
Amitabh Kumar ◽  
Brian McShane ◽  
Mark McQueen

A large Oil and Gas pipeline gathering system is commonly used to transport processed oil and gas from an offshore platform to an onshore receiving facility. High reliability and integrity for continuous operation of these systems is crucial to ensure constant supply of hydrocarbon to the onshore processing facility and eventually to market. When such a system is exposed to a series of complex environmental loadings, it is often difficult to predict the response path, in-situ condition and therefore the system’s ability to withstand subsequent future loading scenarios. In order to continue to operate the pipeline after a significant environmental event, an overall approach needs to be developed to — (a) Understand the system loading and the associated integrity, (b) Develop a series of criteria staging the sequence of actions following an event that will verify the pipeline integrity and (c) Ensure that the integrity management solution is simple and easy to understand so that it can be implemented consistently. For a complex loading scenario, one of the main challenges is the ability to predict the controlling parameter(s) that drives the global integrity of these systems. In such scenarios, the presence of numerous parameters makes the technical modeling and prediction tasks arduous. To address such scenarios, first and foremost, it is crucial to understand the baseline environment data and other associated critical design input elements. If the “design environmental baseline” has transformed (due to large events e.g. storms etc.) from its original condition; it modifies the dynamics of the system. To address this problem, a thorough modeling and assessment of the in-situ condition is essential. Further, a robust calibration method is required to predict the future response path and therefore expected pipeline condition. The study further compares the planned integrity management solutions to the field data to validate the efficiency of the predicted scenarios. By the inclusion of real field-data feedback to the modeling method, balanced integrity solutions can be achieved and the ability to quantify the risks is made more practical and actionable.


Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.


2021 ◽  
pp. 13-23
Author(s):  
M.R. Manafov ◽  
◽  
G.S. Aliyev ◽  
A.I. Rustamova ◽  
V.I. Kerimli ◽  
...  

The mechanism of paraffin formation in transport pipes is briefly discussed. A kinetic model of the formation and wax deposition from oil is proposed. Comparison of the model with the available experimental data gave satisfactory results. The review considers software tools for modeling the wax deposition process. It is noted that the simulation results are not always applicable to real field cases. For a more reliable interpretation, the scaling effect must be taken into account. In the work various technologies for wax removal are considered


2021 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Hakki Aydin ◽  
Bahar F. Hosgor ◽  
Deniz Yagmur Kayhan ◽  
...  

Abstract Digital transformation is one of the most discussed themes across the globe. The disruptive potential arising from the joint deployment of IoT, robotics, AI and other advanced technologies is projected to be over $300 trillion over the next decade. With the advances and implementation of these technologies, they have become more widely-used in all aspects of oil and gas industry in several processes. Yet, as it is a relatively new area in petroleum industry with promising features, the industry overall is still trying to adapt to IR 4.0. This paper examines the value that Industry 4.0 brings to the oil and gas upstream industry. It delineates key Industry 4.0 solutions and analyzes their impact within this segment. A comprehensive literature review has been carried out to investigate the IR 4.0 concept's development from the beginning, the technologies it utilizes, types of technologies transferred from other industries with a longer history of use, robustness and applicability of these methods in oil and gas industry under current conditions and the incremental benefits they provide depending on the type of the field are addressed. Real field applications are illustrated with applications indifferent parts of the world with challenges, advantages and drawbacks discussed and summarized that lead to conclusions on the criteria of application of machine learning technologies.


Author(s):  
Pablo Cesar Trejo ◽  
Jose Renato M.S. Oliveira ◽  
Márcio S.S. Almeida ◽  
Maria C.F. Almeida ◽  
Mario A. Vignoles

The development of new offshore oil and gas fields is continuously expanding to ultra-deep waters. This tendency and the necessity of reducing project costs have been stimulating the development of new technologies as well as the enhancement of floating production systems. In this regard, pipelines and flexible riser systems have been getting more attention due to its low cost of installation and operation. In order to project a pipeline system, it is important to understand the pipe-soil interaction mechanisms and quantify the influence of soil behaviour on pipe response caused by lateral movement such as thermal buckling. The loads that a pipeline is subjected have been a topic of many experimental studies that aim to reproduce those loads in a realistic manner. This present study concerns the analysis of lateral clay-pipe interaction associated with large deformations and berm formation process at the leading edge of the pipe during movement at given burial depths. A series of centrifuge tests was conducted to assess the relationship between horizontal force and lateral pipe displacement. The breakout force experimental results were compared with different literature proposals, showing a good agreement. A procedure was also proposed to evaluate the normalized lateral force through the combination of two different approaches. The results showed a good comparison with the centrifuge experimental data.


Author(s):  
E.B. Priyanka ◽  
S. Thangavel ◽  
Priyanka Prabhakaran

Oil and Gas Pipeline (OGP) projects face a wide scope of wellbeing and security Risk Factors (RFs) all around the world, especially in the oil and gas delivering nations having influencing climate and unsampled data. Lacking data about the reasons for pipeline risk predictor and unstructured data about the security of the OGP prevent endeavors of moderating such dangers. This paper, subsequently, means to foster a risk analyzing framework in view of a comprehensive methodology of recognizing, dissecting and positioning the related RFs, and assessing the conceivable pipeline characteristics. Hazard Mitigation Methods (HMMs), which are the initial steps of this approach. A new methodology has been created to direct disappointment investigation of pinhole erosion in pipelines utilizing the typical pipeline risk strategy and erosion climate reenactments during a full life pattern of the pipeline. Hence in the proposed work, manifold learning with rank based clustering algorithm is incorporated with the cloud server for improved data analysis. The probability risk rate is identified from the burst pressure by clustering the normal and leak category to improve the accuracy of the prediction system experimented on the lab-scale oil pipeline system. The numerical results like auto-correlation, periodogram, Laplace transformed P-P Plot are utilized to estimate the datasets restructured by the manifold learning approach. The obtained experimental results shows that the cloud server datasets are clustered with rank prioritization to make proactive decision in faster manner by distinguishing labelled and unlabeled pressure attributes.


2020 ◽  
Vol 12 (9) ◽  
pp. 3537
Author(s):  
Shannon English ◽  
Joonghyeok Heo ◽  
Jaewoong Won

The formation of sinkholes in Winkler County, Texas is concerning due to the amount of oil and gas infrastructure and the potential for catastrophic losses. Evidences of new and potential sinkholes have been documented, and determining the cause of these sinkholes is paramount to mitigate the devastating consequences thereof. Studies have shown that the Wink sinkholes result from both natural and anthropogenic influences. Data depicting land-cover changes, alterations in the hydrologic systems, climate changes, and oil and gas activity were analyzed in an effort to better understand the link between these processes and sinkhole formation. Results indicate that the combination of these processes lead to the current state. Land cover changes were highest in shrub versus grasses, undeveloped to developed and croplands. Rises in temperature and a decrease in precipitation indicate a shift towards a more arid climate. Changes to the hydraulic system are a direct result of these land cover changes while the groundwater quality depicts an environment prone to dissolution. Historical oil and gas activities have created pathways of meteoric water infiltration to the underlying limestone and evaporite formation. The combination of these processes create an environment that accelerates sinkhole formations. Understanding these processes allows for the development and implementation of better land practices, better groundwater protections, and the need for monitoring and maintaining aging oil and gas infrastructure.


Sign in / Sign up

Export Citation Format

Share Document