scholarly journals Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber fromAloe veraRind

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Adel Ramezani Kakroodi ◽  
Shuna Cheng ◽  
Mohini Sain ◽  
Abdullah Asiri

This work was devoted to reinforcement of polyvinyl alcohol (PVA) using cellulose nanofibers fromAloe verarind. Nanofibers were isolated fromAloe verarind in the form of an aqueous suspension using chemimechanical technique. Mechanical characterizations showed that incorporation of even small amounts of nanofibers (as low as 2% by weight) had significant effects on both the modulus and strength of PVA. Tensile modulus and strength of PVA increased, 32 and 63%, respectively, after adding 2% of cellulose nanofiber fromAloe verarind. Samples with higher concentrations of nanofibers also showed improved mechanical properties due to a high level of interfacial adhesion and also dispersion of fibers. The results showed that inclusion of nanofibers decreased deformability of PVA significantly. Dynamic mechanical analysis revealed that, at elevated temperatures, improvement of mechanical properties due to the presence of nanofibers was even more noticeable. Addition of nanofibers resulted in increased thermal stability of PVA in thermogravimetric analysis due to the reduction in mobility of matrix molecules. Morphological observations showed no signs of agglomeration of fibers even in composites with high cellulose nanofiber contents. Inclusion of nanofibers was shown to increase the density of composites.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
C. P. Rejisha ◽  
S. Soundararajan ◽  
N. Sivapatham ◽  
K. Palanivelu

This paper evaluated the effect of multiwall carbon nanotube (MWCNT) on the properties of PBT/PC blends. The nanocomposites were obtained by melt blending MWCNT in the weight percentages 0.15, 0.3, and 0.45 wt% with PBT/PC blends in a high performance corotating twin screw extruder. Samples were characterized by tensile testing, dynamic mechanical analysis, thermal analysis, scanning electron microscopy, and X-ray diffraction. Concentrations of PBT and PC are optimized as 80 : 20 based on mechanical properties. A small amount of MWCNT shows better increase in the thermal and mechanical properties of the blends of PBT/PC nanocomposite when compared to nanoclays or inorganic fillers. The ultimate tensile strength of the nanocomposites increased from 54 MPa to 85 MPa with addition of MWCNT up to 0.3% and then decreased.The tensile modulus values were increased to about 60% and the flexural modulus was more than about 80%. The impact strength was also improved with 20% PC to about 60% and with 0.15% MWCNT to about 50%. The HDT also improved from 127°C to 205°C. It can be seen from XRD result that the crystallinity of PBT is less affected by incorporating MWCNT. The crystallizing temperature was increased and the MWCNT may act as a strong nucleating agent.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


2021 ◽  
Vol 36 (2) ◽  
pp. 137-143
Author(s):  
S. A. Awad

Abstract This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


2014 ◽  
Vol 1621 ◽  
pp. 149-154
Author(s):  
Yukako Oishi ◽  
Atsushi Hotta

ABSTRACTCellulose nanofibers (Cel-F) were extracted by a simple and harmless Star Burst (SB) method, which produced aqueous cellulose-nanofiber solution just by running original cellulose beads under a high pressure of water in the synthetic SB chamber. By optimizing the SB process conditions, the cellulose nanofibers with high aspect ratios and the small diameter of ∼23 nm were obtained, which was confirmed by transmission electron microscopy (TEM). From the structural analysis of the Cel-F/PVA composite by the scanning electron microscopy (SEM), it was found that the Cel-F were homogeneously dispersed in the PVA matrix. Considering the high molecular compatibility of the cellulose and PVA due to the hydrogen bonding, a good adhesive interface could be expected for the Cel-F and the PVA matrix. The influences of the morphological change in Cel-F on the mechanical properties of the composites were analysed. The Young’s modulus rapidly increased from 2.2 GPa to 2.9 GPa up to 40 SB treatments (represented by the unit Pass), whereas the Young’s modulus remained virtually constant above 40 Pass. Due to the uniform dispersibility of the Cel-F, the Young’s modulus of the 100 Pass composite at the concentration of 5 wt% increased up to 3.2 GPa. The experimental results corresponded well with the general theory of the composites with dispersed short-fiber fillers, which clearly indicated that the potential of the cellulose nanofibers as reinforcement materials for hydrophilic polymers was sufficiently confirmed.


2016 ◽  
Vol 51 (14) ◽  
pp. 1971-1977 ◽  
Author(s):  
NH Noor Mohamed ◽  
Hitoshi Takagi ◽  
Antonio N Nakagaito

The mechanical properties of cellulose nanofiber-reinforced polyvinyl alcohol composite were studied. Neat polyvinyl alcohol films, cellulose nanofiber sheets, and their nanocomposites containing cellulose nanofiber weight ratios of 5, 15, 30, 40, 45, 50 and 80 wt% were fabricated. Heat treatment by hot pressing at 180℃ was conducted on the specimens to study its effect to the mechanical properties and the results were compared with the non heat-treated specimens. Morphology of the composites was studied by scanning electron microscopy and the mechanical properties were evaluated by means of tensile tests. The results showed that increase of cellulose nanofiber content from 5 wt% to 80 wt% has increased the tensile strength of the composites up to 180 MPa, with cellulose nanofiber content higher than 40 wt% yielding higher tensile strength. The heat-treated specimens exhibited higher tensile strength compared to those of untreated specimens.


2013 ◽  
Vol 812 ◽  
pp. 187-191 ◽  
Author(s):  
Nur Izzati Zulkifli ◽  
Noorasikin Samat

Recycled polypropylene/microcrystalline cellulose (rPP/MCC) composites were prepared by adding different loadings of maleic anhydride grafted polypropylene (MAPP) coupling agent. The tensile, impact and morphological properties of the composites were investigated. The obtained results show that the tensile and impact strengths of the composites were significantly enhanced with the addition of MAPP loading from 2 to 5 wt%, as compared with unfilled rPP/MCC composites. However, it was found that at low filler content, different amounts of MAPP resulted in no appreciable change in the tensile strength and modulus. Moreover, dynamic mechanical analysis (DMA) results indicated that, increasing the amount of MAPP loading from 2 to 5 wt% in rPP/MCC provide better stiffness of the composite compared to those neat rPP and neat PP. Field emission scanning microscopy (FESEM) has shown that the composite, with MAPP loading, promotes better fibermatrix interaction.


Sign in / Sign up

Export Citation Format

Share Document