scholarly journals Dual-Electronic Nanomaterial (Synthetic Clay) for Effective Removal of Toxic Cationic and Oxyanionic Metal Ions from Water

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Van Phuong Nguyen ◽  
Khanh Thien Tran Nguyen ◽  
Loc That Ton ◽  
Dong Thanh Nguyen ◽  
Khuong Quoc Nguyen ◽  
...  

A synthetic clay (Mg/Al-layered double hydroxides; LDH) was directly synthesized through a simple coprecipitation method under a low-supersaturation condition. The clay was applied to remove metal cations (Cd2+, Cu2+, Pb2+, Ni2+, and Cr3+) and oxyanions (MnO4– and Cr2O72–) from a single aqueous solution. The result demonstrated that LDH exhibited a poor porosity (its specific surface area and total pore volume: 23.2 m2/g and 0.161 cm3/g, respectively) and positively charged surface within solution pH from 3.0 to 12. The X-ray powder diffraction (XRD) data suggested that the basal spacing of LDH was 0.773 nm. The presence of active CO32– anions in the interlayer region of LDH that played an extremely important role in the adsorption process was identified by XRD and Fourier-transform infrared spectroscopy (FTIR). Energy-dispersive X-ray spectroscopy (SEM) analysis indicated that LDH possessed a surface morphology like a plate with a hexagonal shape. The adsorption isotherms of LDH towards various potentially toxic metals were conducted at 1.0 g/L, pHEquilibrium 5.0, 30°C, and 24 h. The Langmuir maximum adsorption capacity of LDH towards the target metals exhibited the following order: 1.299 mmol/g (for Ni2+ adsorption) > 0.880 mmol/g (Cd2+) > 0.701 mmol/g (Cr3+) > 0.657 mmol/g (Pb2+) > 0.601 mmol/g (Cu2+) > 0.589 mmol/g (Cr2O72–) > 0.522 mmol/g MnO4–. The synthetic clay can adsorb both cations and anions in the solution. Therefore, such LDH material can serve as a potential dual-electronic adsorbent for effectively eliminating various oxyanionic and cationic metal ions from water media.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3718
Author(s):  
Mohammad Azam ◽  
Saikh Mohammad Wabaidur ◽  
Mohammad Rizwan Khan ◽  
Saud I. Al-Resayes ◽  
Mohammad Shahidul Islam

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2012 ◽  
Vol 66 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Xiaoxu Xue ◽  
Change Fu ◽  
Na Li ◽  
Fangfang Zheng ◽  
Weiben Yang ◽  
...  

The aim of this study is to report on the performance of a novel non-phosphorus antiscalant, acrylic acid (AA)-allylpolyethoxy carboxylate (APEC), being developed for calcium-sulfate scale inhibition in industrial water systems. The performance of AA-APEC on calcium-sulfate scale inhibition was compared with that of the two commercial inhibitors, polyamino polyether methylene phosphonates (PAPEMP) and polyacrylic acid (PAA), containing the same polyethylene glycol segments or carboxyl functional groups as AA-APEC. The study indicated that AA-APEC could act as a highly effective calcium sulfate inhibitor, having strong ability to inhibit the precipitation of calcium sulfate at a dosage of 2 mg L−1, showing approximately 83.6% inhibition. The results also showed that AA-APEC dosage, the solution pH, inhibiting temperature, concentration of Ca2+, and SO42− all play important roles in inhibiting calcium-sulfate precipitation. The precipitation thermodynamics and kinetics at different temperatures were also discussed. X-ray diffractometer (XRD) and scanning electron microscope (SEM) analysis showed that AA-APEC strongly affected the texture and the morphology of the deposited calcium sulfate. Calcium sulfate has been inhibited through stabilization by adsorption onto crystal growth sites of nascent crystals altering their morphology.


2020 ◽  
Vol 11 (1) ◽  
pp. 43-51
Author(s):  
Upita Septiani ◽  
Fiska Julian Tasari ◽  
Zilfa Zilfa

This research modified natural zeolite with TiO2 synthesized by the sol-gel process which was applied as a humic acid adsorbent. The purpose of this study was to coat natural zeolites with TiO2 to increase the adsorption capacity of natural zeolites as humic acid adsorbents. The natural zeolite powders were obtained from Kabupaten Solok, West Sumatra, based on X-ray Fluorescence (XRF) analysis, the ratio of silica/alumina (Si/Al) was 4.35, indicating that natural zeolite was clinoptilolite zeolite. Scanning Electron Microscopy (SEM) analysis showed natural zeolite has a rough surface with closed pores while zeolite coated with TiO2 (zeolite/TiO2) has a homogeneous, smooth surface with open pore. The results of the Energy Dispersive X-Ray Spectroscopy (EDS) analysis showed that the level of TiO2 was 7.1%, this result showed that TiO2 has been coated on the surface of the zeolite. Natural zeolite and zeolite/TiO2 were applied as humic acid adsorbents. Maximum adsorption capacity of natural zeolites and zeolites/TiO2 were 0.2787 mg/g and 1.199 mg/g, respectively.


2020 ◽  
Vol 42 (4) ◽  
pp. 550-550
Author(s):  
Houria Rezala Houria Rezala ◽  
Houda Douba Houda Douba ◽  
Horiya Boukhatem and Amaya Romero Horiya Boukhatem and Amaya Romero

A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and BET surface area and consequently the improvement of its capacities adsorption and decolorization of Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms were well fitted by pseudo-second order and Freundlich models, respectively. In addition to that, thermodynamic studies showed an exothermic and a spontaneous process.


2018 ◽  
Vol 78 (8) ◽  
pp. 1753-1761
Author(s):  
Pingfeng Fu ◽  
Zihao Chen ◽  
Tianwen Yang

Abstract The porous metallic iron/carbon (Fe0/C) ceramsites, with virtues of low cost and ‘green’ fabrication, were prepared by direct reduction roasting of magnetite, coal, and paper mill sludge. The X-ray diffraction data revealed that Fe0 was generated in situ by reducing the magnetite at 1,200 °C. Scanning electron microscopy with energy-dispersive X-ray spectroscopy indicated that Fe0 particles, with a size of <10 μm, were highly dispersed on carbon particles to form an integrated anode (Fe0) and cathode (C) structure of microelectrolysis filters. The effects of initial solution pH and Fe/C mass ratio on Cu2+ removal were investigated. The extent of Cu2+ removal increased from 93.53% to 99.81% as initial pH rose from 2.5 to 7.0. The residual Cu2+ concentration was as low as <0.2 mg/L. The highest extent of Cu2+ removal was achieved at Fe/C mass ratio of 6.8:1. The pseudo-second-order kinetic model fitted well for Cu2+ removal by the ceramsite, revealing the chemisorption as a limiting step. The Cu2+ adsorption equilibrium data were well described by the Langmuir isotherm, with a maximum adsorption capacity of 546.45 mg/g at initial pH 3.0.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3102
Author(s):  
Eva Plevová ◽  
Silvie Vallová ◽  
Lenka Vaculíková ◽  
Marianna Hundáková ◽  
Roman Gabor ◽  
...  

Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.


2016 ◽  
Vol 22 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Safiye Bağcı ◽  
Ayhan Ceyhan

The adsorption of methylene blue (MB) from synthetic aqueous solutions in batch experiments using Lupinus Albus-activated carbon (LAAC) by chemical activation with zinc chloride was investigated. Prior to adsorption experiments, surface/physical properties of LAAC were determined using Scanning Electron Microscopy, Fourier transform infrared Spectroscopy and nitrogen adsorption isotherm. In the adsorption experiments, effects of adsorption time, solution pH, MB concentration and amount of LAAC were investigated. The isotherm and kinetic parameters were used to describe the experimental data. The BET surface area was 1254 m2/g while its total pore volume was found to be 0.484 cm3/g. Maximum adsorption capacity occurred at solution pH value 10 and was recorded as 109.89 mg/g. Adsorption data were modeled using Langmuir, Freundlich and Temkin adsorption isotherms. Langmuir isotherm and pseudo-second-order models fit to the process and reaction kinetics correspondingly.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3315
Author(s):  
Moftah Essa Elkartehi ◽  
Rehab Mahmoud ◽  
Nabila Shehata ◽  
Ahmed Farghali ◽  
Shimaa Gamil ◽  
...  

In this work, the efficiency of the adsorptive removal of the organic cationic dye methylene blue (MB) from polluted water was examined using three materials: natural clay (zeolite), Zn-Fe layered double hydroxide (LDH), and zeolite/LDH composite. These materials were characterized via X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) diffraction (XRF), low-temperature N2 adsorption, pore volume and average pore size distribution and field emission scanning electron microscopy (FE-SEM). The properties of the applied nanomaterials regarding the adsorption of MB were investigated by determining various experimental parameters, such as the contact time, initial dye concentration, and solution pH. In addition, the adsorption isotherm model was estimated using the Langmuir, Freundlich, and Langmuir–Freundlich isotherm models. The Langmuir model was the best-fitting for all applied nanomaterials. In addition, the kinetics were analyzed by using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, and the pseudo-second-order model was an apparent fit for all three applied nanomaterials. The maximum Adsorption capacity toward MB obtained from the materials was in the order zeolite/LDH composite > zeolites > Zn-Fe LDH. Thus, the zeolite/LDH composite is an excellent adsorbent for the removal of MB from polluted water.


2019 ◽  
Vol 19 (1) ◽  
pp. 143
Author(s):  
Hans Kristianto ◽  
Novitri Daulay ◽  
Arenst Andreas Arie

Adsorption is one of the most effective and economical method to treat heavy metals in water. In this study, we utilize waste chicken eggshells as biosorbent to adsorb Ni(II). Furthermore we study the effect of eggshell calcination on its adsorption performance. The effect of calcination on the characteristic of eggshell was observed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy (SEM-EDS). It could be observed that CaCO3 in eggshell was converted into CaO, and from SEM images the calcined eggshell became more porous than the uncalcined one. The effect of various parameters such as initial Ni(II) solution pH and initial Ni(II) concentration was investigated using batch adsorption experiments. The data obtained then fitted to Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. The best pH for Ni(II) adsorption was found to be 6. From Langmuir and Dubinin-Radushkevich, it was found that calcined eggshells gave 60 times higher maximum adsorption capacity then uncalcined one. This increase was possible due to more porous structure of calcined eggshells. The adsorption process was found to be exothermic and physisorption. This result was confirmed by the decrease of % removal with increase of temperature. Furthermore, Langmuir isotherm was found to be the best model, indicating adsorption of Ni(II) was monolayer adsorption on homogenous surface.


Sign in / Sign up

Export Citation Format

Share Document