scholarly journals Comparative Assessment of the Antioxidant Activities among the Extracts of Different Parts of Clausena lansium (Lour.) Skeels in Human Gingival Fibroblast Cells

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tingting Zhu ◽  
Wenjian Zuo ◽  
Jia Yan ◽  
Pan Wen ◽  
Zhisheng Pei ◽  
...  

Clausena lansium (Lour.) Skeels (wampee) is an outstanding natural plant with medicinal properties. The aim of this study was to compare the cytoprotective effects of four parts of wampee under oxidative stress. The aqueous extracts of leaf, peel, pulp, and seed were tested for the proliferation effects on human gingival fibroblast (HGF) cells and the protective effects in the hydrogen peroxide-induced HGF model. Furthermore, the total glutathione assay and identification of rutin by high-performance liquid chromatography were carried out to attempt to determine whether the cytoprotective effects were related to the total glutathione (GSH) stability and rutin content. The results showed that all of the extracts had no cytotoxicity to HGF at tested concentrations ranging from 50 to 5000 μg/ml during 24 h, and the leaf, pulp, and seed extracts increased proliferation of HGF at relatively high concentrations. All the extracts except for the seed extract significantly decreased the production of reactive oxygen species, and the peel extracts exhibited the most effective antioxidant effect. The leaf extract had the highest anticytotoxicity and GSH stabilization effect in the HGF challenged with hydrogen peroxide. In addition, the relative content of rutin in peel and leaf extracts was higher than that in pulp and seed. The results of GSH assay and rutin identification suggest that different cellular protective effects among the four parts of wampee are partially related to the GSH stabilization and rutin content. These findings provide a scientific basis for the antioxidant effect-related biological activities of wampee extracts.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 10
Author(s):  
Olha Mykhailenko ◽  
Vilma Petrikaite ◽  
Michal Korinek ◽  
Fang-Rong Chang ◽  
Mohamed El-Shazly ◽  
...  

Crocus sativus L. (saffron) has been traditionally used as a food coloring or flavoring agent, but recent research has shown its potent pharmacological activity to tackle several health-related conditions. Crocus sp. leaves, and petals are the by-products of saffron production and are not usually used in the medicine or food industries. The present study was designed to determine the chemical composition of the water and ethanolic extracts of C. sativus leaves and test their cytotoxic activity against melanoma (IGR39) and triple-negative breast cancer (MDA-MB-231) cell lines by MTT assay. We also determined their anti-allergic, anti-inflammatory, and anti-viral activities. HPLC fingerprint analysis showed the presence of 16 compounds, including hydroxycinnamic acids, xanthones, flavonoids, and isoflavonoids, which could contribute to the extracts’ biological activities. For the first time, compounds such as tectoridin, iristectorigenin B, nigricin, and irigenin were identified in Crocus leaf extracts. The results showed that mangiferin (up to 2 mg/g dry weight) and isoorientin (8.5 mg/g dry weight) were the major active ingredients in the leaf extracts. The ethanolic extract reduced the viability of IGR39 and MDA-MB-231 cancer cells with EC50 = 410 ± 100 and 330 ± 40 µg/mL, respectively. It was more active than the aqueous extract. Kaempferol and quercetin were identified as the most active compounds. Our results showed that Crocus leaves contain secondary metabolites with potent cytotoxic and antioxidant activities.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 446 ◽  
Author(s):  
Hosam O. Elansary ◽  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Halina Ekiert ◽  
Diaa O. El-Ansary ◽  
...  

Investigating the polyphenolic profile of natural Rosmarinus officinalis and Ocimum basilicum populations may reveal essential compounds that have biological activities. Natural populations of R. officinalis and O. basilicum in Northern Riyadh were investigated by HPLC-DAD analyses. Several polyphenols, including rosmarinic acid, gentisic acid, 3,4-dihydroxyphenylacetic acid, rutoside, and others, out of 38 screened were confirmed. Rosmarinic acid was the major polyphenol in both of R. officinalis and O. basilicum. R. officinalis methanolic leaf extracts contained other phenols such as gentisic acid while O. basilicum contained also 3,4-dihydroxyphenylacetic acid and rutoside as well as others. R. officinalis showed higher antioxidant activities than O. basilicum using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and β-carotene bleaching assays. These higher activities are associated with a higher composition of rosmarinic acid in leaf extracts. The antioxidant activities of O. basilicum were attributed to identified phenols of rosmarinic acid, 3,4-dihydroxyphenylacetic acid, and rutoside. There were antiproliferative and cytotoxic activities of leaf extracts, as well as identified polyphenols, against several cancer cells. These activities were attributed to the accumulation of necrotic and apoptotic cells in treated cancer cells with leaf extracts as well as identified polyphenols. The antibacterial and antifungal activities of leaf extracts were mainly attributed to 3,4-dihydroxyphenylacetic acid and rutoside in O. basilicum and rosmarinic acid and caffeic acid in R. officinalis. This study proved that R. officinalis and O. basilicum natural populations might be considered as promising sources of natural polyphenols with biological activities.


2020 ◽  
Vol 16 (4) ◽  
pp. 520-530 ◽  
Author(s):  
Navid Rabiee ◽  
Mojtaba Bagherzadeh ◽  
Amir Mohammad Ghadiri ◽  
Mahsa Kiani ◽  
Sepideh Ahmadi ◽  
...  

Here, an unprecedented synthesis method for nickel oxide nanoparticles (NiO-NPs) was facilitated using Salvia hispanica leaf extracts with the assistance of a high gravity rotating packed bed (RPB) system that enabled fast mass transfer and molecular mixing. The synthesized nanoparticles were anchored on the surface of biodegradable chitosan nanobeads and their photocatalytic activity was evaluated by the degradation of methylene blue. Additionally, the potential biological activities of NiO-NPs in terms of antibacterial (Staphylococcus aureus and Escherichia coli for 24 hours), cytotoxicity (using the PC12 cell line for 24 and 72 hours), and antioxidant activities (based on the discoloration of the methanolic solution of DPPH) were assessed. This novel approach for NiO-NPs@Chitosan synthesis as mediated by a renewable plant extract and facilitated by a high-gravity method, led to the greener synthesis of nanoparticles with significant antibacterial and photocatalytic properties.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Ricardo Gómez-García ◽  
Ana A. Vilas-Boas ◽  
Ana Oliveira ◽  
Manuela Amorim ◽  
José A. Teixeira ◽  
...  

Pineapple by-products (peels and stems) from fruit processing industries were evaluated to understand its potential application as a functional food. Therefore, the bioactive compounds of pineapple by-products were characterized for prebiotic and antioxidant activities. A total characterization of soluble carbohydrates profile (simples and complex carbohydrates), as well as polyphenols was performed, after removal of enzymatic fraction from pineapple crude juice, allowing the decrease of proteolytic activity and improving the other biological activities. Results showed that pineapple liquid fraction, from stem and peels, can be applied as a prebiotic enhancer, promoting the growth of five probiotic microorganisms (two strains of Lactobacillus sp. and three strains of Bifidobacterium sp.), as a single carbohydrate source. Moreover, through HPLC (High Performance Liquid Chromatography) analysis, 10 polyphenols were identified in pineapple liquid fractions, with some expected differences between both evaluated by-products. Gastrointestinal tract was simulated, in a continuous mode to understand the impact of pH changes and gastrointestinal enzymes into pineapple liquid fractions. Results showed a digestion of high molecular weight polysaccharides into small molecular weight tri-, di-, and monosaccharides. There was an increase of samples antioxidant activity through the gastrointestinal stage, followed by the release of specific polyphenols, such as chlorogenic, coumaric, and ferulic acids. The prebiotic activity did not improve throughout the simulation, in fact, the prebiotic potential decreased throughout the different stages.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 457 ◽  
Author(s):  
Biancamaria Senizza ◽  
Gabriele Rocchetti ◽  
Murat Ali Okur ◽  
Gokhan Zengin ◽  
Evren Yıldıztugay ◽  
...  

In this work, the phytochemical profile and the biological properties of Colchicum triphyllum (an unexplored Turkish cultivar belonging to Colchicaceae) have been comprehensively investigated for the first time. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, tuber, and leaf extracts, obtained using different extraction methods, namely maceration (both aqueous and methanolic), infusion, and Soxhlet. Besides, the complete phenolic and alkaloid untargeted metabolomic profiling of the different extracts was investigated. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 285 compounds when considering the different matrix extracts, including mainly alkaloids, flavonoids, lignans, phenolic acids, and tyrosol equivalents. The most abundant polyphenols were flavonoids (119 compounds), while colchicine, demecolcine, and lumicolchicine isomers were some of the most widespread alkaloids in each extract analyzed. In addition, our findings showed that C. triphyllum tuber extracts were a superior source of both total alkaloids and total polyphenols, being on average 2.89 and 10.41 mg/g, respectively. Multivariate statistics following metabolomics allowed for the detection of those compounds most affected by the different extraction methods. Overall, C. triphyllum leaf extracts showed a strong in vitro antioxidant capacity, in terms of cupric reducing antioxidant power (CUPRAC; on average 96.45 mg Trolox Equivalents (TE)/g) and ferric reducing antioxidant power (FRAP) reducing power (on average 66.86 mg TE/g). Interestingly, each C. triphyllum methanolic extract analyzed (i.e., from tuber, leaf, and flower) was active against the tyrosinase in terms of inhibition, recording the higher values for methanolic macerated leaves (i.e., 125.78 mg kojic acid equivalent (KAE)/g). On the other hand, moderate inhibitory activities were observed against AChE and α-amylase. Strong correlations (p < 0.01) were also observed between the phytochemical profiles and the biological activities determined. Therefore, our findings highlighted, for the first time, the potential of C. triphhyllum extracts in food and pharmaceutical applications.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 283 ◽  
Author(s):  
Hosam O. Elansary ◽  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Diaa O. El-Ansary ◽  
Halina Ekiert ◽  
...  

Exploring new sources of polyphenols with biological activities that work against human diseases is the target of natural product studies. This study determined the polyphenol composition of the bark of Malus species M. baccata var. gracilis (Rehder) T.C.Ku and M. toringoides (Rehder) Hughes, using high-performance liquid chromatography with a diode-array detector (HPLC-DAD) analysis. The antiproliferative, cytotoxic, antioxidant and antimicrobial applications of these extracts, as well as the identified phenol, were studied. The HPLC-DAD analysis confirmed three polyphenols in the extracts out of the 21 screened compounds: protocatechuic acid, gallic acid, and catechin. The major constituents in M. baccata and M. toringoides were protocatechuic acid, at 3.16 and 7.15 mg 100 g−1 dry weight (DW), respectively, and catechin, at 5.55 and 6.80 mg 100 g−1 DW, respectively. M. baccata and M. toringoides bark extracts showed antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and ferric-reducing antioxidant power (FRAP) assays, which were attributed to the dominance of protocatechuic acid. The highest antiproliferative and cytotoxic effects were against Jurkat cells. Against MCF-7 and Hela cells, there was necrotic cell accumulation in the early apoptotic as well as the late apoptotic phase. The bark extracts showed noticeable antibacterial effects against Listeria monocytogenes, Bacillus cereus, and Escherichia coli. Protocatechuic acid showed comparable results to bark extracts. There were antifungal effects against Aspergillus ochraceus, A. niger, and Candida albicans, and the activities were higher than the commercial reagent. M. baccata and M. toringoides could be considered as a new source of phenolic acids, including protocatechuic acid with anticancer, antibacterial antifungal, and antioxidant-promising effects.


2020 ◽  
pp. 089270572093916
Author(s):  
Rihem Chaaben ◽  
Rym Taktak ◽  
Basma Mnif ◽  
Noamen Guermazi ◽  
Khaled Elleuch

A novel biocomposite with poly(methyl methacrylate) as resin containing Salvadora persica powders was elaborated. In this study, for the first time, S. persica was used to enhance the bioactive performance of dental restoration materials. Material characterization was carried out both on bare materials and on the elaborated biocomposite (30 wt% of S. persica). X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and high-performance liquid chromatography techniques were conducted to perform material characterization. The obtained results linked to dental material showed the presence of the organic chemical compounds of S. persica, which are responsible for biological activities, and the presence of mineral chemical compounds of S. persica, which are useful for dental applications and health. They also revealed the absence of toxic residual monomers. In addition, they proved the antioxidant activities proof of elaborated composite related to total polyphenol flavonoid content. Finally, they exhibited the antibacterial activity of S. persica and the composite.


2019 ◽  
Vol 17 (1) ◽  
pp. 988-999 ◽  
Author(s):  
Katarína Kulichová ◽  
Jozef Sokol ◽  
Peter Nemeček ◽  
Mária Maliarová ◽  
Tibor Maliar ◽  
...  

AbstractThe rye flour is, together with the wheat flour, the basic ingredient used in traditional bread baking. The rye grain contains many compounds with significant impacts on the consumer. Considering that, various biologically active phytochemicals were determined in extracts from mature grains of 19 rye genotypes (Secale cereale L.). The content of total phenols, flavonoids, phenolic acids and thiols, as well as antioxidant activities and inhibitory activities against trypsin, thrombin, and urokinase were analyzed by spectrophotometric methods. The vanillic acid, vanillin, p-coumaric acid, and t-ferulic acid were analyzed in particular by high performance liquid chromatography (HPLC). The observed differences in the amounts and activities between rye genotypes reflected variations in their genetic background. Rye grain is a remarkable source of specific phytochemicals. Genetic diversity in rye makes it possible to identify individual genotypes that have a unique content and biological activity of compounds deposited in mature grains. One subgroup of rye genotypes had higher values of antioxidant properties and concentrations of polyphenols. Other sub-group had higher proteinase inhibitory activities and contents of polyphenols. The third sub-group contained as though the universal genotypes, i.e. genotypes with average values in nearly all the measured parameters.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 282 ◽  
Author(s):  
Philipp Dörschmann ◽  
Maria Dalgaard Mikkelsen ◽  
Thuan Nguyen Thi ◽  
Johann Roider ◽  
Anne S. Meyer ◽  
...  

Fucoidans from brown seaweeds are promising substances as potential drugs against age-related macular degeneration (AMD). The heterogeneity of fucoidans requires intensive research in order to find suitable species and extraction methods. Ten different fucoidan samples extracted enzymatically from Laminaria digitata (LD), Saccharina latissima (SL) and Fucus distichus subsp. evanescens (FE) were tested for toxicity, oxidative stress protection and VEGF (vascular endothelial growth factor) inhibition. For this study crude fucoidans were extracted from seaweeds using different enzymes and SL fucoidans were further separated into three fractions (SL_F1-F3) by ion-exchange chromatography (IEX). Fucoidan composition was analyzed by high performance anion exchange chromatography (HPAEC) after acid hydrolysis. The crude extracts contained alginate, while two of the fractionated SL fucoidans SL_F2 and SL_F3 were highly pure. Cell viability was assessed with an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay in OMM-1 and ARPE-19. Protective effects were investigated after 24 h of stress insult in OMM-1 and ARPE-19. Secreted VEGF was analyzed via ELISA (enzyme-linked immunosorbent assay) in ARPE-19 cells. Fucoidans showed no toxic effects. In OMM-1 SL_F2 and several FE fucoidans were protective. LD_SiAT2 (Cellic®CTec2 + Sigma-Aldrich alginate lyase), FE_SiAT3 (Cellic® CTec3 + Sigma-Aldrich alginate lyase), SL_F2 and SL_F3 inhibited VEGF with the latter two as the most effective. We could show that enzyme treated fucoidans in general and the fractionated SL fucoidans SL_F2 and SL_F3 are very promising for beneficial AMD relevant biological activities.


Sign in / Sign up

Export Citation Format

Share Document