Platelet chemokines in health and disease

2013 ◽  
Vol 110 (11) ◽  
pp. 894-902 ◽  
Author(s):  
Ela Karshovska ◽  
Christian Weber ◽  
Philipp von Hundelshausen

SummaryIn recent years, it has become clear that platelets and platelet-derived chemokines, beyond their role in thrombosis and haemostasis, are important mediators affecting a broad spectrum of (patho)physiological conditions. These biologically active proteins are released from α-granules upon platelet activation, most probably even during physiological conditions. In this review, we give a concise overview and an update on the current understanding of platelet-derived chemokines in a context of health and disease.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.

2021 ◽  
Vol 26 (11) ◽  
pp. 4567
Author(s):  
O. T. Kim ◽  
V. A. Dadaeva ◽  
A. I. Korolev ◽  
O. M. Drapkina

Perivascular adipose tissue (PVAT) is an active regulator of vascular homeostasis. In physiological conditions, it maintains normal function of vessels, releasing antiatherogenic, anti-inflammatory and vasodilating biologically active substances. Dysfunctional PVAT secretes pro-inflammatory cytokines and adipokines, which play an important role in the development of cardiovascular diseases. This review considers the PVAT function in health and disease, its contribution to the pathogenesis of atherosclerosis, hypertension, aortic aneurysm and vasculitis. In addition, novel methods of non-invasive PVAT assessment and potential strategies for targeted treatment of cardiovascular diseases are presented.


2021 ◽  
Vol 22 (16) ◽  
pp. 8457
Author(s):  
Christina Mertens ◽  
Oriana Marques ◽  
Natalie K. Horvat ◽  
Manuela Simonetti ◽  
Martina U. Muckenthaler ◽  
...  

Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.


2019 ◽  
Vol 19 (9) ◽  
pp. 720-726 ◽  
Author(s):  
Boguslaw Lipinski

Although it is generally accepted that selenium (Se) is important for life, it is not well known which forms of organic and/or inorganic Se compound are the most biologically active. In nature Se exists mostly in two forms, namely as selenite with fourvalent and selenate with sixvalent cations, from which all other inorganic and organic species are derived. Despite a small difference in their electronic structure, these two inorganic parent compounds differ significantly in their redox properties. Hence, only selenite can act as an oxidant, particularly in the reaction with free and/or protein- bound sulhydryl (SH) groups. For example, selenite was shown to inhibit the hydroxyl radicalinduced reduction and scrambled reoxidation of disulfides in human fibrinogen thus preventing the formation of highly hydrophobic polymer, termed parafibrin. Such a polymer, when deposited within peripheral and/or cerebral circulation, may cause irreversible damage resulting in the development of cardiovascular, neurological and other degenerative diseases. In addition, parafibrin deposited around tumor cells produces a protease-resistant coat protecting them against immune recognition and elimination. On the other hand, parafibrin generated by Ebola’s protein disulfide isomerase can form a hydrophobic ‘spike’ that facilitates virus attachment and entry to the host cell. In view of these specific properties of selenite this compound is a potential candidate as an inexpensive and readily available food supplement in the prevention and/or treatment of cardiovascular, neoplastic, neurological and infectious diseases.


2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 868
Author(s):  
Jiayang Zhang ◽  
Ruoyu Sun ◽  
Tingting Jiang ◽  
Guangrui Yang ◽  
Lihong Chen

Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.


2021 ◽  
Author(s):  
Derek Lin ◽  
Henry C. Lin

The gut virome consists of a large population of eukaryotic and prokaryotic viruses that have an emerging role in human health and disease. Growing evidence for the importance of the virome includes recent findings on fecal virome transplantation (FVT) that suggest FVT may have therapeutic potential for the resolution of dysbiosis and treatment of dysbiosis-related disorders. Most viruses in the gut virome are bacteriophages (phages), which have a well-established role in regulating bacterial communities across environments. Phages also influence health and disease by interacting directly with the host immune system. The full extent to which gut phages should be considered as both a target and a tool for microbiome modulation remains to be seen. This chapter will explore the current understanding of the gut virome and the therapeutic potential for FVT.


1977 ◽  
Author(s):  
D. S. Pepper ◽  
Joan Dawes

Commercial heparin was derivatized with Bolton and Hunter reagent (SHPP, succinimidyl-hydroxyphenylpropionate) and the reaction products chromatographed on protamine agarose. Biologically active heparin eluted at 1.2 – 1.4 M NaCl and was iodinated by the chloramine T method, . giving a product of specific activity 20 uCi/ug. The labelled heparin co-chromatographed with cold, biologically active heparin on protamine agarose. Using 0.4ng labelled tracer and 102 protamine agarose beads diluted in bland gel, it was possible to measure heparin concentrations of 0.001 u/ml by inhibition of binding. Heparin tracer alone eluted from 6% agarose molecular sieve columns earlier than heparin + plasma, indicating that the hydrodynamic radius of heparin is reduced when bound to AT III under physiological conditions. When injected intravenously, the label showed complex kinetics and did not have a single half life, clearance was initially rapid, but slowed later. Between 80–160 minutes following injection, the levels of circulating radioactivity rose slightly before falling again. This effect was reproducible in different normal persons and was independent of added heparin over a 100 fold range of dose.


2018 ◽  
Vol 25 (3) ◽  
pp. 227-240 ◽  
Author(s):  
Mithilesh Kumar Jha ◽  
Myungjin Jo ◽  
Jae-Hong Kim ◽  
Kyoungho Suk

Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1806 ◽  
Author(s):  
Eirini Dimidi ◽  
Selina Rose Cox ◽  
Megan Rossi ◽  
Kevin Whelan

Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted.


2019 ◽  
Vol 20 (22) ◽  
pp. 5681 ◽  
Author(s):  
Chien-Ning Hsu ◽  
Li-Tung Huang ◽  
You-Lin Tain

Cardiovascular and neurological diseases can originate in early life. Melatonin, a biologically active substance, acts as a pleiotropic hormone essential for pregnancy and fetal development. Maternal melatonin can easily pass the placenta and provide photoperiodic signals to the fetus. Though melatonin uses in pregnant or lactating women have not yet been recommended, there is a growing body of evidence from animal studies in support of melatonin as a reprogramming strategy to prevent the developmental programming of cardiovascular and neurological diseases. Here, we review several key themes in melatonin use in pregnancy and lactation within offspring health and disease. We have particularly focused on the following areas: the pathophysiological roles of melatonin in pregnancy, lactation, and fetal development; clinical uses of melatonin in fetal and neonatal diseases; experimental evidence supporting melatonin as a reprogramming therapy to prevent cardiovascular and neurological diseases; and reprogramming mechanisms of melatonin within developmental programming. The targeting of melatonin uses in pregnancy and lactation will be valuable in the prevention of various adult chronic diseases in later life, and especially cardiovascular and neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document