Relative contact width evaluation of end hemispherical cavities rollers as an indication of Hertzian contact pressure

Author(s):  
Paresh C Chhotani ◽  
DP Vakharia ◽  
AA Shaikh

In a recent investigation, the end hemispherical cavities (EHC) rollers exhibited better strength against fracture than hollow rollers. Furthermore, EHC rollers looked promising from a higher fatigue life aspect than conventional solid rollers in a simulation study. Therefore, it necessitated further exploration of the EHC roller concept and to this end, in the present investigation, the contact widths of EHC rollers were relatively evaluated to judge its contact stresses' behavior with respect to the solid roller because the contact stresses are responsible for the fatigue life of rolling bearings. In the experiments, the contact footprints were obtained by forcing specimens of rollers against chemically etched surfaces and were examined by a microscope for measurement of contact widths. The experimental trials were performed with individual roller-on-plate tests and also with full-bearing samples. The etch correction factor was used to correct anomalies of real and observed contact widths due to etching film thickness. The parabolic relationships were established for roller variants which yielded constants signifying their relative ranks. The contact semi-widths, thus derived from corrected experimental results of individual roller-on-plate tests, demonstrated good agreement (<5%) with those derived from simulation results. The results of full-bearing sample tests for roller variants also ranked same as individual roller-on-plate tests. The encouraging results of contact semi-width assuredly favor the prospects of relatively higher fatigue life in case of EHC rollers.

2002 ◽  
Vol 125 (1) ◽  
pp. 76-90 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi

In this paper, an isothermal study of the shut down process of elastohydrodynamic lubrication under a constant load is performed. The surface mean velocity is decreased linearly from the initial steady state value to zero. The details of the pressure and film thickness distributions in the contact area are discussed for the two stages of shut down process, namely the deceleration stage and the subsequent pure squeeze motion stage with zero entraining velocity. The nature of the balance between the pressure, the wedge and the squeeze terms in Reynolds equation enables an analytical prediction of the film thickness change on the symmetry line of the contact in the deceleration period, provided that the steady state central film thickness relationship with velocity is known. The results indicate that for a fixed deceleration rate, if the initial steady state surface mean velocity is large enough, the transient pressure and film thickness distributions in the deceleration period solely depend on the transient velocity. The pressure and film thickness at the end of the deceleration period are then the same and do not depend on the initial steady state velocity. From the same initial steady state velocity, larger deceleration rates provide higher central pressure increase, but also preserve a higher film thickness in the contact area at the end of the deceleration period. Later in the second stage when the axisymmetric pressure and film thickness patterns typical of pure squeeze motion form, the pressure distribution in the contact area resembles a Hertzian contact pressure profile with a higher maximum Hertzian pressure and a smaller Hertzian half contact width. As a result, the film thickness is close to a parabolic distribution in the contact area. The volume of the lubricant trapped in the contact area is then estimated using this parabolic film thickness profile.


2014 ◽  
Vol 658 ◽  
pp. 381-386
Author(s):  
Xing Nan Zhang ◽  
Karolina Jablonka ◽  
Romeo Glovnea

Electrical capacitance has been applied in the past for measuring the lubricant film thickness in rolling element bearings. The main difficulty arises from the fact that the measured capacitance is a combination of the capacitances of many rolling elements, which come in contact with both the inner and outer rings. Besides, the capacitance of the Hertzian contact itself and the surrounding area must also be separated. It results in a complex system which, in order to be solved for the film thickness at a particular location on the bearing many approximations have to be made. In the present study the authors use an experimental rig in which the capacitance of a single ball can be isolated. Moreover the capacitance of the ball – inner ring and ball – outer ring contacts can be measured separately.


2002 ◽  
Vol 125 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Jing Wang ◽  
Peiran Yang ◽  
Motohiro Kaneta ◽  
Hiroshi Nishikawa

Theoretical analysis and optical interferometry experiments are performed to investigate the dimple phenomena in thermal elastohydrodynamic lubrication (TEHL) of elliptical contacts under pure sliding conditions. The lubricant entrainment is along the major and minor axes of the Hertzian contact ellipse or at some intermediate angle. Good agreement is achieved between theoretical and experimental results and the surface dimple phenomena occurring in glass-steel conjunctions are explained by the temperature-viscosity wedge mechanism. The influence of the angle between the minor axis and the entrainment vector on the position and shape of the dimple, the central and minimum film thickness, the temperature distribution and the frictional coefficient is discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Friction ◽  
2021 ◽  
Author(s):  
Chia-Jui Hsu ◽  
Andreas Stratmann ◽  
Simon Medina ◽  
Georg Jacobs ◽  
Frank Mücklich ◽  
...  

AbstractLaser surface texturing (LST) has been proven to improve the tribological performance of machine elements. The micro-scale patterns manufactured by LST may act as lubricant reservoirs, thus supplying oil when encountering insufficient lubrication. However, not many studies have investigated the use of LST in the boundary lubrication regime, likely due to concerns of higher contact stresses that can occur with the increasing surface roughness. This study aims to examine the influence of LST on the fatigue lifetime of thrust rolling bearings under boundary lubrication. A series of periodic patterns were produced on the thrust rolling bearings, using two geometrically different designs, namely cross and dimple patterns. Base oil ISO VG 100 mixed with 0.05 wt% P of zinc dialkyldithiophosphate (ZDDP) was supplied. The bearings with cross patterns reduce the wear loss by two orders of magnitude. The patterns not only retain lubricant in the textured pockets but also enhance the formation of an anti-wear tribofilm. The tribofilm generation may be improved by the higher contact stresses that occur when using the textured surface. Therefore, in contrast to the negative concerns, the ball bearings with cross patterns were instead found to increase the fatigue life by a factor of three.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


2021 ◽  
pp. 136943322199249
Author(s):  
Xing Li ◽  
Jiwen Zhang ◽  
Jun Cheng

This paper presents fatigue behaviors and the stiffness degradation law of concrete continuous beams with external prestressed carbon fiber-reinforced polymer (CFRP) tendons. Three specimens were tested under fatigue loading, and the influence of different load levels on the stiffness degradation and fatigue life were studied, and it was found that the stiffness degradation of three test specimens exhibited a three-stage change rule, namely rapid decrease, stable degradation, and sharp decline, but there are obvious differences in the rate and amplitude of stiffness degradation. The load level has a significant influence on the fatigue life of the test specimens. An analytical model with load level considered was proposed to calculate the residual stiffness and predict the stiffness degradation, which is in good agreement with the test results. The model of stiffness degradation presents a possible solution for practical engineering applications of concrete continuous beams with externally prestressed CFRP tendons subjected to different fatigue loadings.


2011 ◽  
Vol 19 (03) ◽  
pp. 177-183 ◽  
Author(s):  
JIN-BO CHEN ◽  
QING-GANG QIU

The technique of horizontal-tube falling film has been used in the cooling and heating industries such as refrigeration systems, heating systems and ocean thermal energy conversion systems. The comprehensive performance of evaporator is directly affected by the film distribution characteristics outside tubes. In this paper, numerical investigation was performed to predict the film characteristics outside the tubes in horizontal-tube falling film evaporator. The effects of liquid flow rate, tube diameter and the circular degree of tube on the film thickness were presented. The numerical simulation results were compared with that of the empirical equations for calculating the falling film thickness, and agreements between them were reasonable. Numerical simulation results show that, at the fixed fluid flow density, the liquid film is thicker on the upper and lower tube and the thinnest liquid film appears at angle of about 120°. The results also indicate that, when the fluid flow density decreases to a certain value, the local dryout spot on the surface of the tube would occur. In addition, the film thickness decreases with the increases of the tube diameter at the fixed fluid flow density.


2015 ◽  
Vol 645-646 ◽  
pp. 70-74 ◽  
Author(s):  
Min Zhong ◽  
Yu Hang Zhao ◽  
Shou Mian Chen ◽  
Ming Li ◽  
Shao Hai Zeng ◽  
...  

An embedded SiGe layer was applied in the source/drain areas (S/D) of a field-effect transistor to boost the performance in the p channels. Raised SiGe S/D plays a critical role in strain engineering. In this study, the relationship between the SiGe overfilling and the enhancement of channel stress was investigated. Systematic technology computer aided design (TCAD) simulations of the SiGe overfill height in a 40 nm PMOS were performed. The simulation results indicate that a moderate SiGe overfilling induces the highest stress in the channel. Corresponding epitaxial growth experiments were done and the obtained experimental data was in good agreement with the simulation results. The effect of the SiGe overfilling is briefly discussed. The results and conclusions presented within this paper might serve as useful references for the optimization of the embedded SiGe stressor for 40 nm logic technology node and beyond.


Sign in / Sign up

Export Citation Format

Share Document