scholarly journals Recent advances in understanding and managing dystonia

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1124 ◽  
Author(s):  
Stephen Tisch

Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Annapurni Jayam Trouth ◽  
Alok Dabi ◽  
Noha Solieman ◽  
Mohankumar Kurukumbi ◽  
Janaki Kalyanam

Acquired myasthenia gravis is a relatively uncommon disorder, with prevalence rates that have increased to about 20 per 100,000 in the US population. This autoimmune disease is characterized by muscle weakness that fluctuates, worsening with exertion, and improving with rest. In about two-thirds of the patients, the involvement of extrinsic ocular muscle presents as the initial symptom, usually progressing to involve other bulbar muscles and limb musculature, resulting in generalized myasthenia gravis. Although the cause of the disorder is unknown, the role of circulating antibodies directed against the nicotinic acetylcholine receptor in its pathogenesis is well established. As this disorder is highly treatable, prompt recognition is crucial. During the past decade, significant progress has been made in our understanding of the disease, leading to new treatment modalities and a significant reduction in morbidity and mortality.


2018 ◽  
Vol 18 (5) ◽  
pp. 430-441 ◽  
Author(s):  
Massimiliano Berretta ◽  
Carmela Romano ◽  
Raffaele Di Francia ◽  
Chiara De Diviitis ◽  
Vincenzo Canzonieri ◽  
...  

Gastrointestinal (GI) tumors are among the leading cause of death in cancer patients worldwide. Particularly, gastric cancer (GC) is the third cause of cancer deaths, whereas esophageal neoplasm is the eighth leading most common cancer worldwide and its incidence, especially adenocarcinoma type, is continuously increasing. Also, Hepatocellular carcinoma, Cholangiocarcinoma and pancreatic cancer represent a very interesting model to multidisciplinary approach and recently new drugs are used in their treatment. Currently, new clinical trials are designed including classic chemotherapy in association with either small molecule inhibitors (i.e. Tyrosine Kinase inhibitors) and/or monoclonal antibody (i.e. anti-EGFR antibody). Moreover, a comprehensive list of new molecules for target therapy is included in this issue. The development of new treatment modalities (multidisciplinary approach) and targeted therapy approaches have contributed to improving the outcome in these cancer diseases. During the past few years, remarkable progress in molecular biology of malignancy, the discovery of specific targets, and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress in cancer treatment, also in GI non-colorectal cancer treatment.


Author(s):  
Susanne E. Ahmari

Work in animal models has great potential to shed light on the neural circuit perturbations that lead to OCD-related behaviors. Circuit-specific manipulations allow testing of the causal role of the brain network abnormalities observed in clinical imaging studies, with a precision that is not possible in investigations in humans. In recent years, circuit-specific manipulations in animals using a range of technologies have confirmed that abnormalities in the cortico-striatal circuitry can produce repetitive behaviors, such as excessive grooming. This chapter summarizes these advances. Refining our understanding of the contribution of particular neural circuits to OCD-relevant behaviors can inform the development of anatomically targeted treatments, such as deep brain stimulation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cody J. Aros ◽  
Carla J. Pantoja ◽  
Brigitte N. Gomperts

AbstractThe respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Paz Nombela ◽  
Borja Miguel-López ◽  
Sandra Blanco

AbstractRNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.


2018 ◽  
Author(s):  
Davide Folloni ◽  
Lennart Verhagen ◽  
Rogier B. Mars ◽  
Elsa Fouragnan ◽  
Charlotte Constans ◽  
...  

SummaryThe causal role of an area within a neural network can be determined by interfering with its activity and measuring the impact. Many current reversible manipulation techniques have limitations preventing their focal application particularly in deep areas of the primate brain. Here we demonstrate a transcranial focused ultrasound stimulation (TUS) protocol that manipulates activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a deep cortical region, anterior cingulate cortex (ACC, experiment 2), in macaques. TUS neuromodulatory effects were measured by examining relationships between activity in each area and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions without sonication, activity in a given area is related to activity in interconnected regions but such relationships are reduced after sonication. Dissociable and focal effects on neural activity could not be explained by auditory artefacts.


Author(s):  
Phillip S. Coburn ◽  
Frederick C. Miller ◽  
Morgan A. Enty ◽  
Craig Land ◽  
Austin L. LaGrow ◽  
...  

AbstractBacillus cereus is recognized as a causative agent of gastrointestinal syndromes, but can also cause a devastating form of intraocular infection known as endophthalmitis. We have previously reported that the PlcR/PapR master virulence factor regulator system regulates intraocular virulence, and that the S-layer protein (SlpA) contributes to the severity of B. cereus endophthalmitis. To begin to better understand the role of other B. cereus virulence genes in endophthalmitis, expression levels of a subset of factors was measured at the midpoint of disease progression in a murine model of experimental endophthalmitis by RNA-Seq. Several cytolytic toxins were expressed at significantly higher levels in vivo than in BHI. The virulence regulators codY, gntR, and nprR were also expressed in vivo. However, at this timepoint, plcR/papR was not detectable, we previously reported that a B. cereus mutant deficient in PlcR was attenuated in the eye. The motility-related genes fla, fliF, and motB, and the chemotaxis-related gene cheA were detected during infection. We have shown previously that motility and chemotaxis phenotypes are important in B. cereus endophthalmitis. The sodA2 variant of manganese superoxide dismutase was the most highly expression gene in vivo, suggesting that this gene is criticial for intraocular survival, potentially through inhibition of neutrophil activity. Expression of the surface layer protein gene, slpA, an activator of Toll-like receptors (TLR) −2 and −4, and a potent contributor to intraocular inflammation and disease severvity, was also detected during infection, albeit at low levels. In summary, genes expressed in a mouse model of Bacillus endophthalmitis might prove to play crucial roles in the unique virulence of B. cereus endophthalmitis, and serve as candidates for novel therapies designed attenuate the severity of this often blinding infection.Impact statementB. cereus causes a potent and rapid infection of the eye that usually results in blindness or enucleation, even with the utilization of current treatment modalities. This necessitates the development of new treatment modalities based on new targets. To begin to better define those B. cereus factors with roles in intraocular infection, we analyzed the expression of genes with both known and hypothesized roles in intraocular infection at the midpoint of infection using a murine model of Bacillus endophthalmitis. Potentially targetable candidate genes were demonstrated to be expressed in vivo, which suggests that these genes might contribute to the unique virulence of B. cereus endophthalmitis. Importantly, our results begin to define the virulome of B. cereus in intraocular infections and identify previously uncharacterized factors with potential roles in the severity and outcome of Bacillus endophthalmitis.


2020 ◽  
Vol 477 (22) ◽  
pp. 4327-4342
Author(s):  
Agnès Ribes ◽  
Antoine Oprescu ◽  
Julien Viaud ◽  
Karim Hnia ◽  
Gaëtan Chicanne ◽  
...  

Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.


Author(s):  
Rashmi Rana ◽  
Shikha Joon ◽  
Kirti Chauhan ◽  
Vaishnavi Rathi ◽  
Nirmal Kumar Ganguly ◽  
...  

: Glioma predominantly targets glial cells in the brain and spinal cord. There are grade I, II, III, and IV gliomas with anaplastic astrocytoma and glioblastoma multiforme as the most severe forms of the disease. Current diagnostic methods are limited in their data acquisition and interpretation, markedly affecting treatment modalities and patient outcomes. Circulating extracellular vesicles (EVs) or “magic bullets” contain bioactive signature molecules such as DNA, RNA, proteins, lipids, and metabolites. These secretory “smart probes” participate in myriad cellular activities, including glioma progression. EVs are released by all cell populations and may serve as novel diagnostic biomarkers and efficient nanovehicles in the targeted delivery of encapsulated therapeutics. The present review describes the potential of EVbased biomarkers for glioma management.


Sign in / Sign up

Export Citation Format

Share Document