scholarly journals Auxin-like compounds act as protectors against UV-B irradiation in garden pea plants

2017 ◽  
Vol 23 (2) ◽  
pp. 79-88 ◽  
Author(s):  
Iskren Sergiev ◽  
Dessislava Todorova ◽  
Elena Shopova ◽  
Zornitsa Katerova ◽  
Jurga Jankauskienė ◽  
...  

AbstractPretreatment with the original auxin physiological analogues 1-[2-chloroethoxycarbonylmethyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) and subsequent UV-B irradiation (180 min at λmax 312 nm for 6.6 kJ·m−2) of pea plants (Pisum sativum L.) was investigated to assess if foliar application of these compounds has ability to attenuate the negative effects caused by UV-B stress. UV-B treatment increased malondialdehyde (MDA) and proline levels as well as superoxide dismutase, catalase and guaiacol peroxidase activities, but decreased hydrogen peroxide, low-molecular thiols, total phenolics and total soluble protein contents. The pre-treatment with TA compounds decreased the oxidative stress provoked by UV-B radiation detected by lower level of MDA, increased the content of thiols and UV-absorbing compounds and had favourable effect on H2O2 content and enzymatic activities. Exogenous application of auxin-like compounds on pea plantlets successfully counteracted UV-B induced oxidative stress via activation of ROS detoxifying enzymes and non-enzymatic antioxidants.

2019 ◽  
Vol 3 (3) ◽  
pp. 117-127 ◽  
Author(s):  
Boda Ravi Kiran ◽  
M.N.V. Prasad

Abstract Lead (Pb) is a major inorganic pollutant with no biological significance and has been a global concern. Phytotoxicity of lead induces toxic effects by generating reactive oxygen species (ROS), which inhibits most of the cellular processes in plants. Hydro-ponic experiments were performed with Ricinus communis to investigate the toxicity and antioxidant responses by exposing to different concentrations of lead (0, 200 and 400 µM) for 10 days. Pb stress caused a significant increase in electrolyte leakage, non-enzymatic antioxidants (phenols and flavonoids) and a decrease in the elemental profile of the plant. Histochemical visualization clearly indicates the significant increase of H2O2 production in dose-dependent manner under Pb stress. Likewise, an increase in catalase, guaiacol peroxidase and superoxide dismutase activity was also evident. Ascorbate peroxidase and MDAR, on the other hand, responded biphasically to Pb treatments showing a decrease in concentration. The decline in redox ratio GSH/GSSG was imposed by the indirect oxidative stress of Pb. Hence these findings showed the ameliorative potential of R. communis to sustain Pb toxicity under oxidative stress.


2019 ◽  
Vol 37 ◽  
Author(s):  
A. SHARMA ◽  
V. KUMAR ◽  
A.K. THUKRAL ◽  
R. BHARDWAJ

ABSTRACT: Pesticides are applied all over the world to protect plants from pests. However, their application also causes toxicity to plants, which negatively affects the growth and development of plants. Pesticide toxicity results in reduction of chlorophyll and protein contents, accompanied by decreased photosynthetic efficiency of plants. Pesticide stress also generates reactive oxygen species which causes oxidative stress to plants. To attenuate the negative effects of oxidative stress, the antioxidative defense system of plants gets activated, and it includes enzymatic antioxidants as well as non-enzymatic antioxidants. The present review gives an overview of various physiological responses of plants under pesticide toxicity in tabulated form.


2012 ◽  
Vol 60 (1) ◽  
pp. 29-36 ◽  
Author(s):  
M. Yildiz ◽  
H. Terzi

The effect of different chromium [Cr(VI)] concentrations (0, 75, 150 and 225 μM) on dehydrogenase activity, total soluble protein, proline, malondialdehyde (MDA) and antioxidant enzymes was investigated in the roots of two barley cultivars (Cr-tolerant Zeynelağa and Cr-sensitive Orza-96) in hydroponic experiments. The root dehydrogenase activity and protein content decreased with an increase in the Cr(VI) concentration, but no significant difference was found between the two barley cultivars. Cr(VI) stress increased the contents of proline and MDA in both cultivars, but this effect was more pronounced in Orza-96 than in Zeynelağa. The activities of antioxidant enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), exhibited changes. The SOD activity increased in Zeynelağa and decreased in Orza-96 at 225 μM Cr(VI) compared to their controls. Cr(VI) stress decreased the APX and POD activities. Zeynelağa had greater APX activity than Orza-96 at 150 and 225 μM Cr(VI). However, there was no marked difference in POD activities between the two cultivars. The decrease in root dehydrogenase activity and protein content, the increase in proline and lipid peroxidation, and the alterations in the activities of antioxidant enzymes may be indicative of oxidative stress induced by Cr(VI).


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1839 ◽  
Author(s):  
Mansour Sobeh ◽  
Ganna Petruk ◽  
Samir Osman ◽  
Mohamed A. El Raey ◽  
Paola Imbimbo ◽  
...  

The wax apple (Syzygium samarangense) is traditionally employed as an antibacterial and immunostimulant drug in traditional medicine. This plant is rich in different flavonoids and tannins. In this study, we isolated two compounds from S. samarangense leaves: myricitrin and 3,5-di-O-methyl gossypetin. Then, we investigated the mechanisms of action of the two compounds against oxidative stress (induced by sodium arsenite) and inflammation (induced by UV light) on human keratinocytes. We could clearly demonstrate that the pre-treatment of cells with both compounds was able to mitigate the negative effects induced by oxidative stress, as no alteration in reactive oxygen species (ROS) production, glutathione (GSH) level, or protein oxidation was observed. Additionally, both compounds were able to modulate mitogen-activated protein kinase (MAPK) signaling pathways to counteract oxidative stress activation. Finally, we showed that 3,5-di-O-methyl gossypetin exerted its antioxidant activity through the nuclear transcription factor-2 (Nrf-2) pathway, stimulating the expression of antioxidant proteins, such as HO-1 and Mn-SOD-3.


2017 ◽  
Vol 10 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Sudip Banerjee ◽  
Niraj Joshi ◽  
Raktim Mukherjee ◽  
Prem Kumar Singh ◽  
Darshee Baxi ◽  
...  

AbstractThe present study was undertaken to assess the degree of oxidative stress and toxic effects induced by chromium on hepatic tissue in male Wistar rats exposed to a realistic dosage of Cr(VI) (20 mg/kg/b.w./day) through drinking water, based on the levels of these metals found in the environment, for a duration of 15, 30 and 60 days. The protective effect of melatonin (10 mg/kg) was also studied by simultaneous administration with the metal. Levels of enzymatic and non-enzymatic antioxidants as well as lipid peroxidation were assessed. There was a significant decrease in enzymatic as well as non-enzymatic antioxidants and an increase in the lipid peroxidation level, which were prevented and maintained at near-normal levels by the administration of melatonin in all treatment periods. Metal accumulation was maximal at 15 days, with gradual decreases till 60 days. Histopathological observations also demonstrated the fact that Cr (VI) exposure leads to cytological lesions in the hepatic tissue promoting cellular necrotic/apoptotic changes, while melatonin was able to counteract insults induced by Cr (VI) at all treatment periods. It also prevented alterations in insulin and glucose levels. Overall, the present study suggests a duration-dependent effect of Cr on hepatic oxidative stress and cytotoxicity and shows the potent activity of melatonin in preventing the negative effects of Cr (VI).


2021 ◽  
Vol 22 (7) ◽  
pp. 3596
Author(s):  
Rita Martín-Ramírez ◽  
Rebeca González-Fernández ◽  
Deborah Rotoli ◽  
Jairo Hernández ◽  
Pablo Martín-Vasallo ◽  
...  

Regulation of oxidative stress (OS) is important to prevent damage to female reproductive physiology. While normal OS levels may have a regulatory role, high OS levels may negatively affect vital processes such as folliculogenesis or embryogenesis. The aim of this work was to study OS induced by glucose, a reactive oxygen species generator, or peroxynitrite, a reactive nitrogen species generator, in cultured human granulosa-lutein (hGL) cells from oocyte donors, analyzing expression of genes involved in oocyte maturation (FSHR, PAPP, and CYP19A1) and OS damage response (ALDH3A2). We also evaluated the effect of celastrol as an antioxidant. Our results showed that although both glucose and peroxynitrite produce OS increments in hGL cells, only peroxynitrite treatment increases ALDH3A2 and PAPP gene expression levels and decreases FSHR gene expression levels. Celastrol pre-treatment prevents this effect of peroxynitrite. Interestingly, when celastrol alone was added, we observed a reduction of the expression of all genes studied, which was independent of both OS inductors. In conclusion, regulation of OS imbalance by antioxidant substances such as celastrol may prevent negative effects of OS in female fertility. In addition to the antioxidant activity, celastrol may well have an independent role on regulation of gene expression in hGL cells.


2019 ◽  
Vol 74 (1) ◽  
pp. 5-14
Author(s):  
GRZEGORZ SZUMIŁO ◽  
LESZEK RACHOŃ ◽  
BARBARA KROCHMAL-MARCZAK

The 3-year experiment was concerned with the response of spring forms of common wheat (Triticum aestivum L. subsp. aestivum), durum wheat (Triticum durum Desf.) and spelt wheat (Triticum aestivum subsp. spelta L. em. Thell.) to the foliar application of a plant growth stimulant (extract from marine algae Ecklonia maxima), with the commercial name of Kelpak SL (GS), as compared to control treatment (C). The following parameters were analysed: yield of grain, yield components (number of ears, weight of 1000 kernels, number and weight of kernels per ear) and physical indicators of grain quality (test weight, uniformity and vitreosity of grain). The study showed that the level of yielding and the yield components were related primarily with the wheat genotype, but they depended also on the agro-climatic conditions and on the algae extract and control experimental treatments. The application of algae extract, compared to the control, caused a significant increase in the yields of the spring wheat species under study, on average by 7.0%. Canopy spraying with algae extract had a favourable effect on the number of ears, on he number and weight of kernels per ear, but it had no effect on the weight of 1000 kernels. The grain quality of durum wheat, spelt wheat and common wheat was affected more strongly by the weather conditions in the successive years of the study and by the genotype than by the foliar application of algae extract. The spelt genotypes were characterised by lower yields and lower grain quality than common wheat and the durum wheat genotypes.


2020 ◽  
Vol 10 (5) ◽  
pp. 578-586
Author(s):  
Areeg M. Abdelrazek ◽  
Shimaa A. Haredy

Background: Busulfan (Bu) is an anticancer drug with a variety of adverse effects for cancer patients. Oxidative stress has been considered as a common pathological mechanism and it has a key role in the initiation and progression of liver injury by Bu. Aim: The study aimed to evaluate the antioxidant impact of L-Carnitine and Coenzyme Q10 and their protective role against oxidative stress damage in liver tissues. Methods and Material: Thirty-six albino rats were divided equally into six groups. G1 (con), received I.P. injection of DMSO plus 1 ml of distilled water daily by oral gavages; G2 (Bu), received I.P. injection of Bu plus 1 ml of the distilled water daily; G3 (L-Car), received 1 ml of L-Car orally; G4 (Bu + L-Car) received I.P. injection of Bu plus 1 ml of L-Car, G5 (CoQ10) 1 ml of CoQ10 daily; and G6 (Bu + CoQ10) received I.P. injection of Bu plus 1 ml of CoQ10 daily. Results: The recent data showed that Bu induced significant (P<0.05) elevation in serum ALT, AST, liver GSSG, NO, MDA and 8-OHDG, while showing significant (P<0.05) decrease in liver GSH and ATP. On the other hand, L-Carnitine and Coenzyme Q10 ameliorated the negative effects prompted by Bu. Immunohistochemical expression of caspase-3 in liver tissues reported pathological alterations in Bu group while also showed significant recovery in L-Car more than CoQ10. Conclusion: L-Car, as well as CoQ10, can enhance the hepatotoxic effects of Bu by promoting energy production in oxidative phosphorylation process and by scavenging the free radicals.


2021 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Athanasios D. Anastasilakis ◽  
Polyzois Makras ◽  
Maria P. Yavropoulou ◽  
Gaia Tabacco ◽  
Anda Mihaela Naciu ◽  
...  

Denosumab is a potent antiresorptive agent that substantially increases bone mineral density and reduces fracture rates at all skeletal sites for as long as it is administered. However, its favorable skeletal effects reverse quickly upon its discontinuation, because of a vast increase of osteoclast number and activity, which leads to a subsequent profound increase of bone turnover above pre-treatment values, a phenomenon commonly described as “rebound phenomenon”. More importantly, most patients experience rapid, profound bone loss due to this burst of bone resorption that may lead in a minority of these patients to occurrence of fractures, especially multiple vertebral fractures. Therefore, subsequent antiresorptive treatment is mandatory, although the optimal regimen is yet to be clarified. In the present review, we outline what is currently known regarding the negative effects of denosumab discontinuation on different aspects of bone status, the factors that may affect them, and strategies to prevent them.


2021 ◽  
Author(s):  
Siavash Beikoghli Kalkhoran ◽  
Janos Kriston-Vizi ◽  
Sauri Hernandez-Resendiz ◽  
Gustavo E Crespo-Avilan ◽  
Ayeshah A Rosdah ◽  
...  

Abstract Aims Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. Methods and results Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P&lt;0.001). Conclusion We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Sign in / Sign up

Export Citation Format

Share Document