scholarly journals Renal Endothelin-1 and Endothelin Receptor Type B Expression in Glomerular Diseases with Proteinuria

2001 ◽  
Vol 12 (11) ◽  
pp. 2321-2329
Author(s):  
INGO LEHRKE ◽  
RÜDIGER WALDHERR ◽  
EBERHARD RITZ ◽  
JÜRGEN WAGNER

Abstract. The endothelin (ET) system has been studied extensively in experimental models of progressive chronic renal disease, but there is limited information regarding the ET system in renal patients. First, the expression of human ET-1, as well as ET receptor type A (ET-RA) and ET-RB, was studied in 26 renal biopsies from patients with different renal diseases. Gene expression was assessed by quantitative reverse transcription-PCR. Second, ET-1 and ET-RBprotein expression and localization were examined, by immunohistochemical analyses, among a homogeneous cohort of 16 patients with IgA nephropathy and different degrees of proteinuria. ET-RBmRNA expression was threefold higher among patients with higher-grade proteinuria [≥2 g/24 h,n= 10; OD ratio (ODR),i.e., wild-type/mutant mRNA ratio, 1.81 ± 0.3], compared with patients with lower-grade proteinuria (<2 g/24 h,n= 8; ODR, 0.63 ± 0.1;P< 0.01) or control subjects (n= 9; ODR, 0.57 ± 0.1;P< 0.01). ET-1 gene expression was significantly higher among patients with higher-grade proteinuria, compared with patients with lower-grade proteinuria (P< 0.01) or control subjects (P< 0.05). ET-RAmRNA expression was not different among the groups. Patients with higher-grade proteinuria who were receiving angiotensin-converting enzyme inhibitors exhibited significantly (P< 0.05) lower ET-1 and ET-RBmRNA expression, which was comparable to that of control subjects. By using immunohistochemical analyses, an association between proteinuria and expression of ET-1 and ET-RBin proximal tubular epithelial cells and of ET-1 in glomeruli was confirmed in the separate cohort of patients with IgA nephropathy. It is concluded that the increased ET-RBand ET-1 mRNA and protein expression observed in animal models of renal disease is also demonstrable among patients with renal disease and high-grade proteinuria.

1992 ◽  
Vol 82 (4) ◽  
pp. 461-468 ◽  
Author(s):  
Tsukasa Nakamura ◽  
Isao Ebihara ◽  
Shiori Osada ◽  
Ko Okumura ◽  
Yasuhiko Tomino ◽  
...  

1. We studied perforin gene expression in T lymphocytes obtained from 26 patients with IgA nephropathy and from 15 healthy age-matched control subjects. 2. The majority of patients with IgA nephropathy (96%) had elevated perforin mRNA expression, whereas no perforin mRNA expression was detected in the T lymphocytes of normal control subjects. 3. A positive correlation was noted between perforin mRNA expression and urinary protein excretion. 4. Perforin mRNA expression correlated also with the histopathology in the renal tissue of patients with IgA nephropathy. 5. Sixty per cent of patients with grade III or IV histopathology had high perforin mRNA expression in T lymphocytes [more than (++)]. 6. These studies suggest that disregulation of perforin gene expression in T lymphocytes may be associated with the progression of IgA nephropathy and could be used as an indicator of disease activity.


2007 ◽  
Vol 92 (10) ◽  
pp. 4046-4051 ◽  
Author(s):  
Huika Li ◽  
Kerry Richard ◽  
Brett McKinnon ◽  
Robin H. Mortimer

Abstract Context: Active placental transport of maternal iodide by the thyroidal sodium iodide symporter (NIS) provides an essential substrate for fetal thyroid hormone synthesis. NIS is expressed in trophoblast and is regulated by human choriogonadotropin (hCG). In thyroid, iodide down-regulates expression of several genes including NIS. Placentas of iodine-deficient rats demonstrate up-regulation of NIS mRNA, suggesting a role for iodide in regulating placental NIS. Objectives and Methods: The objectives were to examine effects of iodide on expression of NIS and hCG in BeWo choriocarcinoma cells. Gene expression was studied by quantitative real-time PCR. Effects on NIS protein expression were assessed by Western blotting. Functional activity of NIS was measured by 125I uptake. Expression of hCG protein was assessed by immunoassay of secreted hormone. Results: Iodide inhibited NIS mRNA and membrane protein expression as well as 125I uptake, which were paralleled by decreased βhCG mRNA expression and protein secretion. Iodide had no effects on pendrin expression. Addition of hCG increased NIS mRNA expression. This effect was partially inhibited by addition of iodide. The inhibitory effects of iodide on NIS mRNA expression were abolished by propylthiouracil and dithiothreitol. Conclusions: We conclude that expression of placental NIS is modulated by maternal iodide. This may occur through modulation of hCG effects on NIS and hCG gene expression.


2021 ◽  
Vol 8 ◽  
Author(s):  
Laura Hernández-Hernández ◽  
Catalina Sanz ◽  
Elena Marcos-Vadillo ◽  
Asunción García-Sánchez ◽  
Esther Moreno ◽  
...  

Background: Some recent familial studies have described a pattern of autosomal dominant inheritance for increased basal serum tryptase (BST), but no correlation with mRNA expression and gene dose have been reported.Objective: We analyzed TPSAB1 mRNA expression and gene dose in a four-member family with high BST and in two control subjects.Methods: Blood samples were collected from the family and control subjects. Complete morphologic, immunophenotypical, and molecular bone marrow mast cell (MC) studies were performed. mRNA gene expression and gene dose were performed in a LightCycler 480 instrument. Genotype and CNV were performed by quantitative real-time digital PCR (qdPCR).Results: CNV analysis revealed a hereditary copy number gain genotype (3β2α) present in all the family members studied. The elevated total BST in the family members correlated with a significant increase in tryptase gene expression and dose.Conclusions and Clinical Relevance: We present a family with hereditary α-tryptasemia and elevated BST which correlated with a high expression of tryptase genes and an increased gene dose. The family members presented with atypical MC-mediator release symptoms or were even asymptomatic. Clinicians should be aware that elevated BST does not always mean an MC disorder.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5957-5957
Author(s):  
Marie-Magdelaine Coudé ◽  
Thorsten Braun ◽  
Jeannig Berrou ◽  
Mélanie Dupont ◽  
Raphael Itzykson ◽  
...  

Abstract Background: The bromodomain-containing protein 4 (BRD4) activates the transcription elongation factor b (P-TEFb) which regulates RNA polymerase II. Conversely, hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) inactivates P-TEFb. BRD4/HEXIM1 interplay influences cell cycle progression and tumorigenesis. It has been widely demonstrated that BRD4 knockdown or inhibition by JQ1 is associated with c-MYC downregulation and antileukemic activity. We recently reported that the small molecule BRD2/3/4 inhibitor OTX015 (Oncoethix, Lausanne, Switzerland), currently in clinical development, mimics the effects of JQ1 (Braun et al, ASH 2013). We evaluated the effect of OTX015 on c-MYC, BRD2/3/4, and HEXIM1 in human in vitro leukemic models. Methods: c-MYC, BRD2/3/4 and HEXIM1 expression was assessed in six acute myeloid leukemia (AML; K562, HL-60, NB4, NOMO-1, KG1, OCI-AML3) and two acute lymphoid leukemia (ALL; JURKAT and RS4-11) cell lines after exposure to 500 nM OTX015. Quantitative RT-PCR and Western blotting were performed at different time points (24-72h). A heatmap was computed with R-software. Results: c-MYC RNA levels were ubiquitously downregulated in all AML and ALL cell lines after 24h exposure to OTX015 (Figure 1). c-MYC protein levels decreased to a variable extent at 24-72h in all cell lines evaluated other than KG1. BRD2, BRD3 and BRD4 mRNA expression was significantly decreased in K562 cells (known to be OTX015-resistant) after 48h exposure to OTX015 but was increased in HL60 and NOMO-1 cells, while minimal to no increases were observed in other cell lines. OTX015 induced a decrease in BRD2 protein expression in most cell lines, but not in K562 cells. In contrast, decreased BRD4 protein expression was only seen in the OCI-AML3, NB4 and K562 cell lines. BRD3 protein levels were not modified after OTX015 exposure in all cell lines evaluated other than KG1. HEXIM1 mRNA expression increased after 24h exposure to 500 nM OTX015 in all cell lines except OTX015-resistant K562 cells in which the increase was considered insignificant (less than two-fold). Increases in HEXIM1 protein levels were observed in OCI-AML3, JURKAT and RS4-11 cell lines at 24-72h but not in K562 cells. Conclusion: Taken together, these results show that BRD inhibition by OTX015 modulates HEXIM1 gene and protein expression, in addition to c-MYC decrease and BRD variations. HEXIM1 upregulation seems to be restricted to OTX015-sensitive cell lines and was not significantly affected in OTX015-resistant K562 cells. Further studies are needed to clarify the role of HEXIM1 in antileukemic activity of BRD inhibitors. Figure 1: Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Figure 1:. Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Disclosures Riveiro: OTD: Employment. Herait:OncoEthix: Employment. Dombret:OncoEthix: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Chen ◽  
Shayahati Bieerkehazhi ◽  
Xiumei Li ◽  
Lili Ma ◽  
Waresijiang Yibulayin ◽  
...  

Esophageal cancer (EC) is the eighth most prevalent cancer and the sixth leading cause of cancer-related mortality worldwide. As an antiapoptotic and a proapoptotic protein, respectively, survivin and Bad play an important role in carcinogenesis of the most human cancers including EC. However, the regulatory relationships between them remain unclear. We sought to investigate the effects of survivin knockdown and overexpression on the expression of Bad gene, cell cycle progression, and apoptosis of esophageal carcinoma cell. The mRNA expression levels of survivin and Bad were determined in EC tissue samples. The knockdown and overexpression experiments were performed in ECA109 and KYSE450 cells via transfection with survivin overexpression and shRNA plasmids. A Bad overexpression experiment was conducted to confirm the biological effect on knockdown of survivin via modulating Bad expression. RT-qPCR and Western blot analysis were used to detect mRNA and protein expression, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. The chromatin immunoprecipitation (ChIP) was conducted to determine the binding sites of survivin on the promoter of Bad gene. By analyzing the mRNA expression of survivin and Bad in 40 ESCC patient specimens, we found that the positive expression rate of survivin in tumor tissues (88%, 35/40) was remarkably high, compared with the distal nontumor tissues (48%, 19/40, p  < 0.01). On the other hand, the positive expression rate of Bad in tumor tissues (70%, 28/40) was remarkably low, compared with the distal nontumor tissues (95%, 38/40, p  < 0.01). Overexpression of survivin decreases Bad mRNA and protein expression and promotes transformation of cell cycle to S phase. Conversely, knockdown of survivin increases Bad mRNA and protein expression and induces cell cycle arrest and apoptosis. Bad overexpression inducing apoptosis of esophageal carcinoma cell shows the similar apoptotic effect with survivin knockdown. ChIP assays indicate that survivin directly binds to the Bad promoter region, diminishing the transcriptional activity of Bad. In conclusion, the result suggested that survivin regulates Bad gene expression by binding to its promoter and modulates cell cycle and apoptosis in esophageal carcinoma cell.


2019 ◽  
Author(s):  
Briana Mittleman ◽  
Sebastian Pott ◽  
Shane Warland ◽  
Tony Zeng ◽  
Mayher Kaur ◽  
...  

AbstractWith the exception of mRNA splicing, little is known about co-transcriptional or post-transcriptional regulatory mechanisms that link noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’ Seq to characterize alternative polyadenylation (APA) in the nuclear and total RNA fractions of 52 HapMap Yoruba lymphoblastoid cell lines, which we have studied extensively in the past. We identified thousands of polyadenylation sites that are differentially detected in nuclear mRNA and whole cell mRNA, and found that APA is an important mediator of genetic effects on gene regulation and complex traits. Specifically, we mapped 602 apaQTLs at 10% FDR, of which 152 were found only in the nuclear fraction. Nuclear-specific apaQTLs are highly enriched in introns and are also often associated with changes in steady-state expression levels, suggesting a widespread mechanism whereby genetic variants decrease mRNA expression levels by increasing usage of intronic PAS. We identified 24 apaQTLs associated with protein expression levels, but not mRNA expression, and found that eQTLs that are not associated with chromatin QTLs are enriched in apaQTLs. These findings support multiple independent pathways through which genetic effects on APA can impact gene regulation. Finally, we found that 19% of apaQTLs were also previously associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression levels, protein expression levels, and disease risk, and reveals uncharted modes of genetic regulation.


2004 ◽  
Vol 65 (2) ◽  
pp. 420-430 ◽  
Author(s):  
Gloria A. Preston ◽  
Iwao Waga ◽  
David A. Alcorta ◽  
Hitoshi Sasai ◽  
William E. Munger ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 131-134
Author(s):  
Iizuka Michiro ◽  
◽  
Hirata Ayumu ◽  
Abe Noriaki ◽  
Jobu Kohei ◽  
...  

Ginger rhizome (Zingiber officinale) exhibits multiple pharmacological actions. For example, its pungent components target the transient receptor potential vanilloid 1 (TRPV1) ion channel and thus contribute to swallowing reflex recovery by elevating the neuropeptide substance P. However, the precise mechanism underlying this action remains unclear. To examine TRPV1 and substance P gene expression in the mouse tongue in response to stimulation by orally administered ginger, quantitative real-time polymerase chain reaction and immunohistochemistry were performed to evaluate mRNA and protein expression. TRPV1 mRNA expression in the mouse tongue was upregulated 30 min after oral ginger stimulation. In the gingerstimulated mouse, TRPV1 protein expression was increased and concentrated in the plasma membranes of the mucous glandular cells of the tongue epithelium. No significant differences in substance P mRNA expression relative to the control were observed after ginger stimulation. However, immunohistochemistry revealed that the amount of substance P protein expression increased in the mucous glandular cells of the tongue epithelium in ginger-stimulated mice, and this expression appeared to concentrate in the secretory granules of these cells. Activation of TRPV1 promotes the secretion of substance P in saliva, and clinically, saliva levels of substance P can be measured noninvasively and can provide a useful biomarker of the swallowing function. An increased level of substance P in the saliva could indicate improved dysphagia. Our data suggest that ginger activates TRPV1 and promotes the secretion of substance P in saliva. Ginger is therefore expected to serve as a functional agent for improving dysphagia.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2602-2602
Author(s):  
Liana M Toia ◽  
Erica Lynne Braverman ◽  
Jinno Antonio Magno ◽  
Jessica C. Shand

Abstract Acute lymphoblastic leukemia (ALL) in infants carries a poor prognosis and is characterized by cytogenetic rearrangements producing abnormal MLL fusion genes. Clinically effective targeting of the MLL fusion heterocomplex remains challenging, and therapeutic options remain limited. We have observed that the reduced isoform of HMGB1, a chromatin architectural protein that stabilizes DNA and facilitates transcription, is selectively over-expressed in the nuclei of infant MLL-ALL cells. In this study, we generated an HMGB1 siRNA knockdown in primary MLL-ALL cells from 3 infants to test our hypothesis that HMGB1-MLL interactions regulate pro-leukemic gene expression and represent a rational therapeutic target. CD19-selected leukemic blasts were isolated from the cryopreserved bone marrow or peripheral blood specimens of 3 infants with cytogenetically confirmed MLL-AF4 rearrangements. HMGB1 knockdown was confirmed by comparing HMGB1 mRNA and protein expression, by qPCR and Western Blot, in cells transfected with HMGB1 vs. control sequence siRNA. First, determined whether HMGB1 knockdown affected expression of the MLL fusion gene itself, by comparing MLL-AF4 mRNA and protein levels 72 hours after siRNA transfection. HMGB1 knockdown produced a 2.8 (± 0.55)- fold decrease in MLL-AF4 mRNA expression by qPCR (p<0.05), with a corresponding decrease in MLL-AF4 fusion protein expression by Western Blot, in each of the 3 specimens. Next, we determined whether HMGB1 binds functionally relevant regions of the MLL gene. We developed an electrophoretic mobility assay (EMSA) to compare the mobility of lysates from control vs. HMGB1 siRNA-treated infant MLL-ALL cells when mixed with biotinylated oligonucleotides spanning the transcriptionally active domains of MLL1. In each of 3 primary infant MLL-ALL cells, we detected a consistent gel-shift pattern on SDS-PAGE, in wild-type and control siRNA lysates, with oligonucleotides spanning exons 6-9- where many MLL-AF4 fusions occur. The gel-shift was completely abrogated in HMGB1 siRNA lysates. We then compared the expression of MLL target genes involved in leukemic transformation, by qPCR, in infant MLL-ALL cells treated with HMGB1 vs. control siRNA. We observed a significant (p<0.01) reduction in expression of MEIS1 (5.8 ± 2.2-fold decrease), HOXA7 (4.3 ± 0.4-fold decrease) and HOXA9 (3.7 ± 1.5-fold decrease) in infant MLL-ALL cells treated with HMGB1 vs. control siRNA. These data confirmed a role for HMGB1 in MLL gene/target gene regulation at the DNA level. Finally, we considered whether HMGB1, as a scaffold protein, could interact directly with the MLL fusion heterocomplex at the protein level. We immunoprecipitated HMGB1 from the nuclear fraction of wild-type primary infant MLL-ALL cells (n=3 patients), then probed the pull-down for N-terminal MLL (MLLn), C-terminal MLL (MLLc), the MLLn-AF4 fusion, the MLLn-ENL fusion, and the MLL-associated histone 3 methyltransferase DOT1L. MLLn and MLLn-AF4 were strongly detected in all HMGB1 immunoprecipitates. Individual and sequential co-immunoprecipitation of HMGB1 with MLL-AF4 and DOT1L in revealed loss of known complex formation between MLL-AF4 and DOT1L following HMGB1 knockdown. This was accompanied by a 3.4 (± 0.9)-fold decrease in DOT1L mRNA expression (p<0.001) by qPCR and a complete loss of histone 3k79me2 protein expression by Western blot. Taken together, these data suggest a central role for the fully reduced isoform of HMGB1, found in high abundance in infant ALL nuclei, in the formation of the MLL-AF4 transcription complex- including for the stable recruitment of DOT1L and H3K79me2, and in the regulation of MLL target genes such as HOXA9 and MEIS1. We are currently conducting chromatin immunoprecipitation and sequencing studies to identify methylation marks, particularly at H3K79me2, impacted by HMGB1 knockdown in infant ALL cells. We hope these studies will directly inform the development of small molecule inhibitors that specifically disrupt the binding sites and capacities of HMGB1 with MLL, which could synergize with the effects of methyltransferase inhibitors to more completely silence leukemic gene expression in infant ALL and improve the prognosis of this devastating disease. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Benoît P. Nicolet ◽  
Monika C. Wolkers

SUMMARYT cell differentiation and activation induces substantial alterations in gene expression. While RNA sequencing and single cell RNA sequencing analysis provided important insights in the gene expression dynamics of T cells, it is not well understood how the mRNA expression translates into the protein landscape. By combining paired RNA-sequencing and mass spectrometry data of primary human CD8+ T cells, we found that mRNA expression is a poor proxy for the overall protein output. Irrespective of the differentiation or activation status, the correlation coefficient of human CD8+ T cells reached a mere 0.41-0.43. Only gene classes that mediate conserved cellular processes such as protein translation or cellular metabolism showed a strong correlation of mRNA with protein expression. In contrast, the mRNA expression and protein output of transcription factors, cell surface molecules, and secreted proteins - including cytokines - only mildly correlated. Conversely, highly conserved genes correlated well with the protein output. This was also true for the presence of AU-rich elements in the 3’untranslated region, in particular for mRNAs that encode secreted proteins. In conclusion, the in-depth characterization of the transcriptome and proteome in human CD8+ T cells emphasizes the need of combined mRNA and protein analysis for our understanding of T cell biology and function.


Sign in / Sign up

Export Citation Format

Share Document