scholarly journals Conversion of Lignocellulosic Biomass to Bioethanol: An Overview with a Focus on Pretreatment

Author(s):  
Yengkhom Disco Singh ◽  
Kunja Bihari Satapathy

The present review article aims to highlight various pretreatment technologies involved in the biochemical conversion of biomass to bioethanol from lignocellulosic biomass without the process modification. Pretreatment technologies are aimed to increase the enzyme susceptibility to the biomass for high yield of ethanol production through microbial fermentation. Broadly, pretreatment methods are divided into four categories including physical, chemical, physico-chemical and biological. This paper comprehensively reviewed on the lignocellulosic biomass to bioethanol process with focuses on pretreatment methods, their mechanisms, combination of different pretreatment technologies, the addition of external chemical agents, advantages, and disadvantages. It also discussed the ethanol productions from biomass in details without disturbing the process integrity.

2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1510
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 295
Author(s):  
Asma Yakdhane ◽  
Sabrine Labidi ◽  
Donia Chaabane ◽  
Anita Tolnay ◽  
Arijit Nath ◽  
...  

Microencapsulation is a well-known technology for the lipid delivery system. It prevents the oxidation of fatty acids and maintains the quality of lipid after extraction from oil seed and processing. In flaxseed oil, the amount of ω-3 and ω-6 polyunsaturated fatty acids are 39.90–60.42% and 12.25–17.44%, respectively. A comprehensive review article on the microencapsulation of flaxseed oil has not been published yet. Realizing the great advantages of flaxseed oil, information about different technologies related to the microencapsulation of flaxseed oil and their characteristics are discussed in a comprehensive way, in this review article. To prepare the microcapsule of flaxseed oil, an emulsion of oil-water is performed along with a wall material (matrix), followed by drying with a spray-dryer or freeze-dryer. Different matrices, such as plant and animal-based proteins, maltodextrin, gum Arabic, and modified starch are used for the encapsulation of flaxseed oil. In some cases, emulsifiers, such as Tween 80 and soya lecithin are used to prepare flaxseed oil microcapsules. Physico-chemical and bio-chemical characteristics of flaxseed oil microcapsules depend on process parameters, ratio of oil and matrix, and characteristics of the matrix. As an example, the size of the microcapsule, prepared with spray-drying and freeze-drying ranges between 10–400 and 20–5000 μm, respectively. It may be considered that the comprehensive information on the encapsulation of flaxseed oil will boost the development of functional foods and biopharmaceuticals.


GCB Bioenergy ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 670-679 ◽  
Author(s):  
Sang Do Yook ◽  
Jiwon Kim ◽  
Gyeongtack Gong ◽  
Ja Kyong Ko ◽  
Youngsoon Um ◽  
...  

2020 ◽  
pp. 152808372096827
Author(s):  
Shu Fang ◽  
Rui Wang ◽  
Haisu Ni ◽  
Hao Liu ◽  
Li Liu

Electric heating garment can improve the thermal comfort for people living and working in cold environment. Compared with passive heating materials, electrical heating shows dominant advantages on reusability, controlled temperature, safety and so on. This review article systematically introduced the material preparation, electric-thermal properties, advantages and disadvantages of the existing flexible heating elements, and elaborated the research and application progress of smart garments in detail, providing reference for the research of flexible heating elements and smart garments. And the existing challenges and the possible future perspectives were also discussed.


2015 ◽  
Vol 51 (5) ◽  
pp. 516-525 ◽  
Author(s):  
N. R. Al’myasheva ◽  
A. A. Novikov ◽  
E. Yu. Kozhevnikova ◽  
A. V. Golyshkin ◽  
A. V. Barkov ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1542
Author(s):  
Marta Michalak ◽  
Konrad Wojnarowski ◽  
Paulina Cholewińska ◽  
Natalia Szeligowska ◽  
Marcel Bawej ◽  
...  

In recent years, a boost in the ruminant population has been observed, and consequently, an increase in the animals’ demand for nutrients and methane emissions. Methane emission is generated during the microbial fermentation of feed in the rumen, and a percentage even up to 12% of the energy obtained by this process can be wasted. In addition, the use of antibiotics in animal husbandry is being increasingly restricted. restricted. As a result, there is a continuous search for innovative feed additives that can serve as alternatives to antibiotics, and will also be safe for both people and the environment. In the present review article, additives were selected on basis that, according to studies conducted so far, may positively affect the microbiome of the digestive system by improving indicators and/or reducing methane production. Among them, probiotics, prebiotics or their combination—synbiotics are at the forefront of research. However, additives in the form of algae or plant origin are also gaining ground in popularity, such as essential oils, fermented wheat straw or Gelidium amansii, due to their general recognition as safe (GRAS) for both humans and environment.


2017 ◽  
Vol 19 (8) ◽  
pp. 1969-1982 ◽  
Author(s):  
Deepak Verma ◽  
Rizki Insyani ◽  
Young-Woong Suh ◽  
Seung Min Kim ◽  
Seok Ki Kim ◽  
...  

For realizing sustainable bio-based refineries, it is crucial to obtain high yields of value-added chemicalsviadirect conversion of cellulose and lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document