scholarly journals Quantifying functional increases across a large-scale wetland restoration chronosequence

2021 ◽  
Author(s):  
Jacob Berkowitz

Over 300,000 ha of forested wetlands have undergone restoration within the Mississippi Alluvial Valley region. Restored forest successional stage varies, providing opportunities to document wetland functional increases across a large-scale restoration chronosequence using the Hydrogeomorphic (HGM) approach. Results from >600 restored study sites spanning a 25-year chronosequence indicate that: 1) wetland functional assessment variables increased toward reference conditions; 2) restored wetlands generally follow expected recovery trajectories; and 3) wetland functions display significant improvements across the restoration chronosequence. A functional lag between restored areas and mature reference wetlands persists in most instances. However, a subset of restored sites have attained mature reference wetland conditions in areas approaching or exceeding tree diameter and canopy closure thresholds. Study results highlight the importance of site selection and the benefits of evaluating a suite of wetland functions in order to identify appropriate restoration success milestones and design monitoring programs. For example, wetland functions associated with detention of precipitation (a largely physical process) rapidly increased under post restoration conditions, while improvements in wetland habitat functions (associated with forest establishment and maturation) required additional time. As the wetland science community transitions towards larger scale restoration efforts, effectively quantifying restoration functional improvements will become increasingly important.

2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


2007 ◽  
Vol 67 (3) ◽  
pp. 403-411 ◽  
Author(s):  
WG. Silva ◽  
JP. Metzger ◽  
S. Simões ◽  
C Simonetti

Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km², the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2978 ◽  
Author(s):  
Sherong Zhang ◽  
Dejun Hou ◽  
Chao Wang ◽  
Xuexing Cao ◽  
Fenghua Zhang ◽  
...  

Geology uncertainties and real-time construction modification induce an increase of construction risk for large-scale slope in hydraulic engineering. However, the real-time evaluation of slope safety during construction is still an unsettled issue for mapping large-scale slope hazards. In this study, the real-time safety evaluation method is proposed coupling a construction progress with numerical analysis of slope safety. New revealed geological information, excavation progress adjustment, and the support structures modification are updating into the slope safety information model-by-model restructuring. A dynamic connection mapping method between the slope restructuring model and the computable numerical model is illustrated. The numerical model can be generated rapidly and automatically in database. A real-time slope safety evaluation system is developed and its establishing method, prominent features, and application results are briefly introduced in this paper. In our system, the interpretation of potential slope risk is conducted coupling dynamic numerical forecast and monitoring data feedback. The real case study results in a comprehensive real-time safety evaluation application for large slope that illustrates the change of environmental factor and construction state over time.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3151
Author(s):  
Furong Xu ◽  
Jacob E. Earp ◽  
Maya Vadiveloo ◽  
Alessandra Adami ◽  
Matthew J. Delmonico ◽  
...  

Background: Although dietary protein and physical activity play essential roles in developing and preserving lean mass, studies exploring these relationships are inconsistent, and large-scale studies on sources of protein and lean mass are lacking. Accordingly, the present study examined the relationship between total protein intake, protein sources, physical activity, and lean mass in a representative sample of US adults. Methods: This cross-sectional study analyzed data from 2011–2016 US National Health and Nutrition Examination Survey and corresponding Food Patterns Equivalents Database (n = 7547). Multiple linear regression models were performed to examine the sex-specific associations between total protein intake, protein sources (Dairy, Total Protein Foods, Seafood, and Plant Proteins), physical activity, and lean mass adjusting for demographics, weight status, and total daily energy intake. Results: Total protein intake was inversely related to lean mass in females only (Lean mass index: β= −0.84, 95%CI: −1.06–−0.62; Appendicular lean mass index: β= −0.35, 95%CI: −0.48–−0.22). However, protein sources and physical activity was positively associated with lean mass in males and/or females (p < 0.05). Conclusion. Study results suggest that consuming more protein daily had a detrimental influence on lean mass in females whereas eating high-quality sources of proteins and being physically active are important for lean mass for men and women. However, the importance of specific protein sources appears to differ by sex and warrants further investigation.


Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


2021 ◽  
Vol 6 ◽  
pp. 8
Author(s):  
Amale Laaroussi ◽  
Abdelghrani Bouayad ◽  
Zakaria Lissaneddine ◽  
Lalla Amina Alaoui

Morocco is one of the countries investing more and more in Renewable Energy (RE) technologies to meet the growing demand for energy and ensure the security of supply in this sector. The number of solar projects planned and implemented, as well as solar thermal projects in the form of Concentrating Solar Power (CSP) installations is steadily increasing. Many of these installations are designed as large utility systems. In order to provide strong evidence on local, regional and even national impacts, this article examines the impacts of large-scale renewable energy projects on territorial development, based on a case study of the NOOR 1 (Concentrated Solar Power (CSP)) project in Ouarzazate, Morocco. The data collected during this study, conducted through semi-structured interviews with experts, stakeholders, local community representatives and combined with an analysis of documents provided by the NOOR 1 project managers, investors and consulting firms specialized in the field of Renewable Energy, provide detailed evidence on the type and magnitude of impacts on the economic development of the Moroccan southern region where the NOOR 1 plant is located. The data collected is analyzed using NVIVO software. The study results in a consolidated list of many impacts with varying levels of significance for different stakeholder groups, including farmers, youth, women, community representatives and small and medium firms owners. It should be noted that the importance of analyzing the economic impact of large infrastructure projects is widely recognized, but so far, there is little published in the academic and professional literature on the potential impacts of these projects at the local level. Even less information is available on the local impacts of large-scale project implementation in Morocco. While many macroeconomic studies have fed the recent surge in investment in RE projects with the promise of multiple social, economic, environmental, and even geopolitical benefits at the macro level, public debates and discussions have raised considerable doubts. The question of whether these promises would also leave their marks at the local level has also arisen. Despite these uncertainties, very few academics and practitioners have conducted research to empirically develop a good understanding of the impact of RE projects at the local level. To fill this research gap, the economic impact analysis of NOOR 1 provides a detailed empirical overview, which allows a better understanding of the effects that the infrastructure developments of Concentrated Solar Power (CSP) plants can have on the economic environment in which they are located.


2020 ◽  
Vol 12 (3) ◽  
pp. 349-356
Author(s):  
Vyacheslav BABURIN ◽  
◽  
Svetlana BADINA ◽  

The article proposes a methodological approach to potential damage from natural hazards forecasting in case of large-scale investment projects realization in ski tourism planning, as well as to assessing changes in the vulnerability of the territory in which these projects will be implemented. The method was verified on the data of the “Northern Caucasus Resorts” tourist cluster. The study purpose is the creation and verification of a methodology for socio-economic damage predicting in limit values and vulnerability changing in the regions of the “North Caucasus Resorts” tourist cluster objects localization for the long term. Research methods – statistical (a structural approach based on the identification of common structural patterns of several sets). The lack of statistical information on significant parameters for forecasting determine necessitates of using the various logically non-contradictory revaluations based on the identified structural similarities for the calculation of their values within the planning horizon. The study results and main conclusions – in case of the “North Caucasus Resorts” tourist cluster creation the number of people potentially located in avalanche and mudflow danger areas will significantly increase in all of its facilities localization municipalities, which indicate an increase in the individual risk of death level for this territory. The present population in the ski season in some of the most remote and underdeveloped areas can increase up to 30 times. The increment in the value of the fixed assets for the municipalities under consideration will be from two to 90 times, potential damages in limit values will reach tens of billions rubles.


2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Vesa Jormanainen ◽  
Jarmo Reponen

We report the large-scale deployment, implementation and adoption of the nationwide centralized integrated and shared Kanta health information services by using the Clinical Adoption Framework (CAF). The meso and macro level dimensions of the CAF were incorporated early into our e-health evaluation framework to assess Health Information System (HIS) implementation at the national level. We found strong support for the CAF macro level model concepts in Finland. Typically, development programs were followed by government policy commitments, appropriate legislation and state budget funding before the CAF meso level implementation activities. Our quantitative data point to the fact that implementing large-scale health information technology (HIT) systems in practice is a rather long process. For HIT systems success in particular citizens’ and professionals’ acceptance are essential. When implementation of the national health information systems was evaluated against Clinical Adoption Meta-Model (CAMM), the results show that Finland has already passed many milestones in CAMM archetypes. According to our study results, Finland seems to be a good laboratory entity to study practical execution of HIT systems, CAF and CAMM theoretical constructs can be used for national level HIS implementation evaluation.


2020 ◽  
Vol 30 (2) ◽  
pp. 23-26
Author(s):  
Sultana Algin ◽  
Mohammad Waliul Hasnat Sajib ◽  
SM Yasir Arafat

Obsessive Compulsive Disorder (OCD) is a common disorder and usually runs a chronic course with waxing and waning course. It leads to pervasive impairments in multiple domains of life. The aim of the study was to assess the demographic characteristics of the OCD patients and symptom severity of this disorder. This was a cross-sectional study done in OCD clinic of outpatient department (OPD) of BSMMU, during the period from May, 2015 to April, 2017. Four hundred patients fulfilling the inclusion and exclusion criteria were selected consecutively. After taking written consent a predetermined questionnaire was filled for each patient through face-to-face interview. Then patients were evaluated covering the following areas: Axis I diagnoses (DSM-IV) and Y-BOCS severity scale. The results showed that, the mean age of the respondents was 26.6 (SD±9.9) years, ranging from 8 to 63 years. According to Y-BOCS symptoms severity used for adult patients found that majority (70%) of the patients had moderate to severe sufferings. Male had co-morbid anxiety disorders (panic disorder, agoraphobia, social phobia) more but female patients were found more depressive disorders. Female had more hypothyroidism, diabetes, skin disorders and hypertension than male. These demographic status, co-morbidity profile and symptoms severity can serve as the baseline data for a country like Bangladesh and further large scale, multi-centered study would better generalize the study results. Bang J Psychiatry December 2016; 30(2): 23-26


2021 ◽  
Author(s):  
Enes Yildirim ◽  
Ibrahim Demir

Flood risk assessment contributes to identifying at-risk communities and supports mitigation decisions to maximize benefits from the investments. Large-scale risk assessments generate invaluable inputs for prioritizing regions for the distribution of limited resources. High-resolution flood maps and accurate parcel information are critical for flood risk analysis to generate reliable outcomes for planning, preparedness, and decision-making applications. Large-scale damage assessment studies in the United States often utilize the National Structure Inventory (NSI) or HAZUS default dataset, which results in inaccurate risk estimates due to the low geospatial accuracy of these datasets. On the other hand, some studies utilize higher resolution datasets, however they are limited to focus on small scales, for example, a city or a Hydrological United Code (HUC)-12 watershed. In this study, we collected extensive detailed flood maps and parcel datasets for many communities in Iowa to carry out a large-scale flood risk assessment. High-resolution flood maps and the most recent parcel information are collected to ensure the accuracy of risk products. The results indicate that the Eastern Iowa communities are prone to a higher risk of direct flood losses. Our model estimates nearly $10 million in average annualized losses, particularly in large communities in the study region. The study highlights that existing risk products based on FEMA's flood risk output underestimate the flood loss, specifically in highly populated urban communities such as Bettendorf, Cedar Falls, Davenport, Dubuque, and Waterloo. Additionally, we propose a flood risk score methodology for two spatial scales (e.g., HUC-12 watershed, property) to prioritize regions and properties for mitigation purposes. Lastly, the watershed-scale study results are shared through a web-based platform to inform the decision-makers and the public.


Sign in / Sign up

Export Citation Format

Share Document