scholarly journals EXPERIMENTAL STUDY OF ANTIMICROBIAL PROPERTIES AND ACUTE TOXICITY OF THE PEO-BASED COMBINED SUPPOSITORIES

2019 ◽  
Vol 5 ◽  
pp. 12-20
Author(s):  
Tymur Ravshanov ◽  
Ganna Zaychenko ◽  
Kateryna Zhemerova ◽  
Volodymyr Zaychenko ◽  
Olena Ruban

Aim. The research of antimicrobial and toxicological parameters of a promising pharmaceutical composition with indole-3-carbinol and meloxicam in the form of rectal suppositories. Materials and methods. The research of antimicrobial activity was carried out in vitro by diffusion in nutrient agar in the modification of "holes" on the reference strains of common pathogens Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Candida albicans. Adult rats were used for the study of acute toxicity. Suppository mass were administrated in the largest possible volume rectally or orally. The animals were periodically monitored according to the experimental plan – the assessment of physiological parameters before administration and after 6, 12, 18, 24 hours, at 3, 7 and 14 days. The animals were removed from experiment and necropsy provided after 1, 3, 7, and 14 days. Results. The sizes of zones of inhibition of the microorganisms growth were most significant (from 19.27±0.61 mm of E. coli to 40.80±0.42 mm of S. aureus) near sample of the combined composition suppository compared with other combination of active substances and excipients. During the observation of animals for 14 days and the study of internal organs after autopsy, deviations in physiological (weight, temperature, activity, respiratory rate) and macroscopic morphological indicators of animals from reference values were not detected. Conclusion. According to the results of microbiological studies, a moderate antimicrobial effect of suppositories of combined composition in relation to all the studied pathogens was revealed. The absence of manifestations of acute toxicity allows us to conclude that the pharmaceutical composition can be classified as practically non-toxic substances. The obtained results allow us to recommend a pharmaceutical composition with indole-3-carbinol and meloxicam on a polyethylene oxide basis in the form of suppositories for further preclinical studies of specific pharmacological effects as a prostate protective agent.

2020 ◽  
Vol 13 (2) ◽  
pp. 166-180
Author(s):  
Bashige Chiribagula V ◽  
Bakari Amuri S ◽  
Okusa Ndjolo Philippe ◽  
Kahumba Byanga J ◽  
Duez P ◽  
...  

Dialium angolense is used in Bagira for its various medicinal properties particularly in the management of infectious diseases. In this study, the methanol and aqueous extracts of leaves and fruits were evaluated for their in vitro antioxidant and antimicrobial properties and their in vivo toxicity on Cavia porcellus. The major phytochemical classes of extracts were screened using standard in-tube reactions. The antimicrobial study was tested on Candida albicans, Escherichia coli, Salmonella typhi, Staphylococcus aureus and Streptococcus pneumoniae using agar well diffusion and dilution methods, while the antioxidant activity was evaluated by a DPPH assay. For the acute toxicity study, animals (6/group) were orally given in a single dose 5000, 1000 or 15000 mg of extract/kg body weight (BW) then observed for 14 days. In sub-acute toxicity assays, 150 or 300 mg/kg BW/day were orally given, and animals observed for 28 days. Total phenolics and total flavonoids contents ranged 1.19 to 1.61 mg GAE.g-1 and 0.45 to 1.01 mg QEg-1, respectively. The extracts presented antioxidant activity with IC50 ranging 4.9 to 6.9 µg/mL. The minimal inhibitory concentration (MIC) on tested strains ranged from 1.9 to 500 µg/mL with the aqueous extract of fruits as a most active extract: MIC=1.9 µg/mL on E. coli and C. albicans. No signs of toxicity were noted during the acute and sub-acute toxicity assessments, suggesting a maximal tolerate doses (MDT) and LD50 > 15000 mg/kg BW. This study highlights the antioxidant and antimicrobial activities of Dialium angolense and suggests that further studies be directed towards the isolation of active compounds.


2015 ◽  
Vol 752-753 ◽  
pp. 387-390
Author(s):  
Boonyanit Thaweboon ◽  
Sroisiri Thaweboon ◽  
Rattiporn Kaypetch ◽  
Thaniya Muadcheingka

Natural products have attracted much attention in recent years as a useful substance used in medicine and dental products. Propolis is a lipophilic resinous mixture collected from various plant sources by honeybees. It has been known for many biological activities including antimicrobial properties. Objective: To evaluate thein vitroantimicrobial activity of propolis against caries-associated microorganisms,Streptococcusmutans,LactobacilluscaseiandCandidaalbicans. Materials and methods: The antimicrobial activity was initially screened using agar disc diffusion and then the minimum lethal concentrations (MLCs) were determined using broth dilution technique. Chlorhexidine (0.2%) and dimethyl sulfoxide (5%) were used as positive and negative controls, respectively. Results: Propolis exhibits the zones of inhibition ranged from 15 to 18 mm forS.mutans, and from 10 to 12 mm forL.casei, but presented no activity againstC.albicans. The MLC againstS.mutanswas 2.86 mg/mL and those againstL.caseiwere 11.44 mg/mL and 12.87 mg/mL. Conclusion: Propolis shows a potent antimicrobial effect againstS.mutansandL.casei.This could provide a scientific basis to its application of usage in oral care products for the prevention of dental caries. However, further studies are necessary to evaluate other biological activities and molecular mechanisms of action as well as its cytotoxic effect.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 810
Author(s):  
Hatem Alshammari ◽  
Fahad Bakitian ◽  
Jessica Neilands ◽  
Ole Zoffmann Andersen ◽  
Andreas Stavropoulos

The aim of this systematic review was to assess the current scientific evidence of the antimicrobial potential of strontium (Sr) when used to functionalize titanium (Ti) for oral applications. Out of an initial list of 1081 potentially relevant publications identified in three electronic databases (MEDLINE via PubMed, Scopus, and Cochrane) up to 1 February 2021, nine publications based on in vitro studies met the inclusion criteria. The antimicrobial potential of Sr was investigated on different types of functionalized Ti substrates, employing different application methods. Nine studies reported on the early, i.e., 6–24 h, and two studies on the late, i.e., 7–28 days, antimicrobial effect of Sr, primarily against Staphylococcus aureus (S. aureus) and/or Escherichia coli (E. coli). Sr-modified samples demonstrated relevant early antimicrobial potential against S. aureus in three studies; only one of which presented statistical significance values, while the other two presented only the percentage of antimicrobial rate and biofilm inhibition. A relevant late biofilm inhibition potential against S. aureus of 40% and 10%—after 7 and 14 days, respectively—was reported in one study. Combining Sr with other metal ions, i.e., silver (Ag), zinc (Zn), and fluorine (F), demonstrated a significant antimicrobial effect and biofilm inhibition against both S. aureus and E. coli. Sr ion release within the first 24 h was generally low, i.e., below 50 µg/L and 0.6 ppm; however, sustained Sr ion release for up to 30 days, while maintaining up to 90% of its original content, was also demonstrated. Thus, in most studies included herein, Sr-functionalized Ti showed a limited immediate (i.e., 24 h) antimicrobial effect, likely due to a low Sr ion release; however, with an adequate Sr ion release, a relevant antimicrobial effect, as well as a biofilm inhibition potential against S. aureus—but not E. coli—was observed at both early and late timepoints. Future studies should assess the antimicrobial potential of Ti functionalized with Sr against multispecies biofilms associated with peri-implantitis.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2021 ◽  
Vol 11 (9) ◽  
pp. 4315
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Cristina Mihaela Luntraru ◽  
Alexandru Suciu

Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.


2021 ◽  
Vol 22 (13) ◽  
pp. 7130
Author(s):  
Jeffersson Krishan Trigo-Gutierrez ◽  
Yuliana Vega-Chacón ◽  
Amanda Brandão Soares ◽  
Ewerton Garcia de Oliveira Mima

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


Drug Research ◽  
2020 ◽  
Author(s):  
Pinki Yadav ◽  
Kashmiri Lal ◽  
Ashwani Kumar

AbstractThe in vitro antimicrobial properties of some chalcones (1a–1c ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2a–2u) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2g and 2u exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2q and 2g with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2223
Author(s):  
Moises Bustamante-Torres ◽  
Victor H. Pino-Ramos ◽  
David Romero-Fierro ◽  
Sandra P. Hidalgo-Bonilla ◽  
Héctor Magaña ◽  
...  

The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Agata Cieślik-Bielecka ◽  
Tadeusz Bold ◽  
Grzegorz Ziółkowski ◽  
Marcin Pierchała ◽  
Aleksandra Królikowska ◽  
...  

The aim of the study was to investigate the leukocyte- and platelet-rich plasma (L-PRP) antimicrobial activity. The studied sample comprised 20 healthy males. The L-PRP gel, liquid L-PRP, and thrombin samples were testedin vitrofor their antibacterial properties against selected bacterial strains using the Kirby-Bauer disc diffusion method. Two types of thrombin were used (autologous and bovine). Zones of inhibition produced by L-PRP ranged between 6 and 18 mm in diameter. L-PRP inhibited the growth ofStaphylococcus aureus(MRSA and MSSA strains) and was also active againstEnterococcus faecalisandPseudomonas aeruginosa. There was no activity againstEscherichia coliandKlebsiella pneumoniae. The statistically significant increase of L-PRP antimicrobial effect was noted with the use of major volume of thrombin as an activator. Additionally, in groups where a bovine thrombin mixture was added to L-PRP the zones of inhibition concerning MRSA,Enterococcus faecalis, andPseudomonas aeruginosawere larger than in the groups with autologous thrombin. Based on the conducted studies, it can be determined that L-PRP can evokein vitroantimicrobial effects and might be used to treat selected infections in the clinical field. The major volume of thrombin as an activator increases the strength of the L-PRP antimicrobial effect.


2021 ◽  
Vol 24 (1) ◽  
pp. 84-97
Author(s):  
Zohreh Karimi Taheri ◽  
◽  
Mohammad Hosein Aarabi ◽  
Ali Nazari Alam ◽  
Majid Nejati ◽  
...  

Background and Aim: Despite the anti-cancer and antimicrobial properties of licorice extract and lavender essential oil, some factors, such as low bioavailability and biodegradable, limit their therapeutic use. Using nanoparticles is a method to overcome these restrictions. This study aimed to investigate the anti-proliferative effects of nanoemulsion containing licorice extract and lavender essential oil on cancer cells; we also evaluated its antimicrobial properties in vitro. Methods & Materials: In this experimental study, nanoemulsions, containing licorice extract and lavender essential oil were developed by the spontaneous emulsion method. The anti-proliferative effect of nanoemulsion was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric method on two cell lines HepG2 and SK-MEL-3. To measure the antimicrobial effect of 4 standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Minimum Inhibitory Concentration (MIC) method was used. Ethical Considerations: This study was approved by the Ethics Committee of Kashan University of Medical Sciences (Code: IR.KAUMS.MEDNT.REC.1396.106). Results: The results of MTT test on HepG2 cells indicated that the concentrations of 630, 1250, and 2500 μg/mL nanoemulsions caused toxicity to the cell and led to the death of >50% of the cells (IC50=401μg/mL; P<0.05). Evaluating SK-MEL3 cells revealed that except for 75 μg of nanoemulsion, other concentrations induced death in >50% of the cells (IC50 = 82 μg/mL; P<0.05). In addition, nanoemulsions, with antimicrobial properties, were studied in 4 strains of bacteria; the highest antimicrobial properties were observed in Staphylococcus epidermidis. Conclusion: Nanoemulsion containing licorice extract and lavender essential oil presents antimicrobial and antiproliferative effects on the two cell lines studied. The current study results indicated that the nano emulsification of lavender essential oil and licorice extract can enhance their biological impact; thus, they can be used as a drug formulation.


Sign in / Sign up

Export Citation Format

Share Document