scholarly journals Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters

2000 ◽  
Vol 42 (5-6) ◽  
pp. 201-214 ◽  
Author(s):  
H. Macarie

During the last 20 years, as a result of its low cost, anaerobic digestion has turned into a popular wastewater treatment technology. Today, with at least 1330 reactors constructed in the world, it is considered to have reached technological maturity. Until recently however, it was used quite exclusively for the treatment of food industry effluents. It is only during the last 10 years that anaerobic digestion has started to be applied massively to the treatment of sewage and effluents from other industrial activities. During the 1970s and 1980s, the chemical and petrochemical industries were almost refractory to the introduction of anaerobic digestion. The situation has reversed since 1990 and at least 80 full-scale anaerobic plants are nowadays treating this type of waste. Nevertheless, a great amount of promotion is still required before anaerobic digestion can be considered as an accepted technology by this industry. The paper presents the actual situation of anaerobic treatment at full-scale inthis industrial sector as well as recent developments at lab-scale and discusses some important concepts to consider before the implementation of an anaerobic treatment. In particular a table is presented with the main characteristics of 65 of the 80 full-scale plants identified to date. The probable reasons for the slow initial development of anaerobic treatment are also discussed and it is shown that anaerobic digestion has been the solution to treatment problems for which aerobic systems were inefficient.

1989 ◽  
Vol 21 (4-5) ◽  
pp. 145-155 ◽  
Author(s):  
R. Méndez ◽  
J. M. Lema ◽  
R. Blázquez ◽  
M. Pan ◽  
C. Forjan

We have evaluated the utility of applying anaerobic digestion treatment to the leachates from two landfill sites receiving solid urban refuse from populations of similar standards of living. Both tips are located in the same area and have very similar climates, but they differ as regards the length of time they have been operated. The leachates from the older tip have much lower levels of organic load, 40% of which was refractory to the anaerobic digestion treatment applied. The digestibility of leachates was studied by using a semicontinuous suspended sludge system.It was possible to remove up to 65% of the soluble COD of leachates from the young tip by means of an anaerobic filter working at HRTs less than 2 days. This system proved to be highly stable when its operating conditions were subjected to perturbations similar to those likely to be suffered by a full-scale plant.


1985 ◽  
Vol 17 (1) ◽  
pp. 265-270
Author(s):  
Juhani Orivuori

Very few methods have been developed with such speed as anaerobic wastewater treatment. Universities, Government agencies, private enterprise and scientists all over the world are using millions of dollars in studies, pilot and full scale experiments trying to find the most practical anaerobic treatment systems for various wastewaters. The follow-up alone of all the information published in this field would require an institute of its own. Commercial interests are driving private enterprise to fast development of full scale treatment plants. In this paper the reasons for this interest in anaerobic treatment are focused on in the light of the recent developments in knowledge of the quality and quantity of forest industry wastewaters. Future wastewater characteristics and the possibility of anaerobic treatment to meet future demands are discussed. The need for co-operation between forest industry process engineers and wastewater treatment specialists is emphasized in order to optimize internal and external pollution control methods.


2019 ◽  
Vol 116 ◽  
pp. 00095
Author(s):  
Katarzyna Umiejewska

Wastewater from breweries usually contains high levels of organic components, which are generally easily biodegradable. Ideally, the mainstream method of brewery wastewater treatment is based on biological transformation, which have been reported to be effective in efficiently reducing COD concentration. Anaerobic digestion technology plays an important role in the treatment of high strength wastewater [1]. The benefit of the process is biogas production and recovering the energy. The main goal of the paper is to present the results of a full-scale research performed in a brewery WWTP in 2016. Wastewater from brewery containing COD, a priority pollutant of organic components, is treated in IC reactor. The biogas produced during the anaerobic digestion is transformed into heat. Total COD and soluble COD were measured 5 days a week in wastewater before and after anaerobic reactor. In raw wastewater, average total COD was 5226 mg/L with the percentage share of soluble COD 89.4%. As a result of anaerobic treatment 83,7% reduction of total COD and 92.9% reduction of soluble COD were obtained. The average daily biogas production was 4089 m3/d.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 457-462 ◽  
Author(s):  
Hélène Fruteau de Laclos ◽  
Serge Desbois ◽  
Claude Saint-Joly

Anaerobic digestion has been up to now essentially applied to wastewater. However, anaerobic treatment of organic solid waste fits in well with the new requirements for waste management. The Valorga full-scale plant in Tilburg (the Netherlands) is designed to process 52,000 tons per year of organic municipal solid waste separately collected. The Valorga digestion process is a semi-continuous, high-solid, one-step, plug-flow type process. The main characteristic is the complete absence of any mechanical equipment inside the reactors. The waste to be treated consists of food and garden waste. The characterization of the waste stream revealed a seasonal fluctuation in quantity and quality, that was correlated with seasonal garden waste production. The methane yield is varying from 210 to 290 m3 STP per Mg of volatile solids. It is related to waste composition. During the slack winter period the waste contains proportionally more food waste that is more biodegradable than lignocellulosic garden waste. The biological process was stable based on volatile acidity, alkalinity and ammonia measurements in the effluent. The organic residue, after dewatering and storage under aerobic conditions, can be considered as soil conditioner.


2017 ◽  
Vol 76 (4) ◽  
pp. 983-991
Author(s):  
Maximilian Lüdtke ◽  
Åke Nordberg ◽  
Christian Baresel

Anaerobic digestion is today internationally acknowledged as an environmentally sound process for energy and nutrient recovery from organic wastes, and it is the dominant sludge treatment technology in most countries’ wastewater treatment plants. Laboratory- or pilot-scale experiments are commonly used as a first step to investigate the potential of new ideas or to confirm research hypothesis before confirmation in full-scale. The objectives of this study were to investigate transferability of methane yield assessments between laboratory- and full-scale, and to compare the influence of experimental uncertainties on experimental power in parallel continuous digester experiments for the two scales. Both batch experiment data (used in a simple equation), as well as continuous laboratory experiments, could be used to predict full-scale methane yield with a high accuracy (<5% difference). Full-scale digesters significantly outperformed hand-fed laboratory digesters in terms of experimental power regarding relative differences in methane yield between two digesters operated in parallel. However, to justify costly long-term continuous laboratory-scale experiments with sufficient experimental power and potentially high transferability, resources also have to be allocated to measures that ensure a high data quality from full-scale reference facilities.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 74
Author(s):  
Alejandro Sobron ◽  
David Lundström ◽  
Petter Krus

Testing of untethered subscale models, often referred to as subscale flight testing, has traditionally had a relatively minor, yet relevant use in aeronautical research and development. As recent advances in electronics, rapid prototyping and unmanned-vehicle technologies expand its capabilities and lower its cost, this experimental method is seeing growing interest across academia and the industry. However, subscale models cannot meet all similarity conditions required for simulating full-scale flight. This leads to a variety of approaches to scaling and to other alternative applications. Through a literature review and analysis of different scaling strategies, this study presents an overall picture of how subscale flight testing has been used in recent years and synthesises its main issues and practical limitations. Results show that, while the estimation of full-scale characteristics is still an interesting application within certain flight conditions, subscale models are progressively taking a broader role as low-cost technology-testing platforms with relaxed similarity constraints. Different approaches to tackle the identified practical challenges, implemented both by the authors and by other organisations, are discussed and evaluated through flight experiments.


Sign in / Sign up

Export Citation Format

Share Document