Oxyprenylated Secondary Metabolites as Modulators of Lipid and Sugar Metabolism

Author(s):  
Serena Fiorito ◽  
Francesco Epifano ◽  
Lorenzo Marchetti ◽  
Lucia Palumbo ◽  
Ilkay Erdogan Orhan ◽  
...  

: O-Prenylcoumarins (3,3-dimethylallyl, geranyl-, farnesyl- and related biosynthetic derivatives) represent a class of rarely occurring natural compounds. The most part of these secondary metabolites have been obtained from plant species belonging to the Rutaceae, Apiaceae, andFabaceae families, and from fungi, and bacteria. In the last two decades prenyloxycoumarinshave been found to possess a great potential in terms of pharmacological activities. The aim of this comprehensive review is to make a survey of the in so far reported literature citations about these valuable phytochemicals and structurally related compounds about their modulatory properties of lipid and sugar metabolism. Literature data have been acquired from the main Internet database. Several oxyprenylated secondary metabolites have been surveyed. Among these prenyloxycoumarins represented the main group exerting displayed valuable effects as modulators of lipid and sugar metabolism. The title phytochemicals have been found in common edible and fruits vegetables already known to have beneficial effects to this concern, thus enforcing the nutraceutical role of these food plants. All compounds outlined in the present review article have a great potential for the next future for the prevention and management of acute and chronic metabolic disorders

2021 ◽  
Vol 11 ◽  
Author(s):  
Dharmendra Kumar ◽  
Mogana Rajagopal ◽  
Gabriel Akyirem Akowuah ◽  
Yong-Xin Lee ◽  
Chua Wei Chong ◽  
...  

: Podophyllotoxin is a nonalkaloidtoxin aryltetralin lactone lignan, occurring naturally and extracted from the rhizomes and roots of Podophyllum species. Podophyllotoxin and its derivatives have shown to possess a broad spectrum of pharmacological activities, mainly antineoplastic and antiviral properties. Podophyllotoxin is served as a potential anticancer agent and also the precursor for the chemical synthesis of some clinically important anticancer agents.The chemical modification and pharmacological investigation of podophyllotoxin derivatives have become a concern nowadays. Research interest has been stimulated in the innovation of podophyllotoxin derivatives as the semi-synthetic anticancer agent, especially etoposide and teniposide. Podophyllotoxin and its derivatives are available in several formulations and also found to be effective in combination therapy. This review article aims to provide an overview of the role of podophyllotoxin, its mechanism of action, pharmacological activities, pharmacokinetics, available formulations, and its effects in combination therapy. This article also reviewed the biosynthesis, structure and modifications of podophyllotoxin and its derivatives as an anticancer agent.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 588
Author(s):  
Hui-Fang Chiu ◽  
Kamesh Venkatakrishnan ◽  
Oksana Golovinskaia ◽  
Chin-Kun Wang

Hypertension (HT) is one of the pivotal risk factors for various detrimental diseases like cardiovascular diseases (CVDs), cerebrovascular disease, and renal dysfunction. Currently, many researchers are paying immense attention to various diet formula (dietary approach) with a special focus on micro and macronutrients along with modified lifestyle and standard anti-hypertensive drugs. Micronutrients (minerals/vitamins) play a central role in the regulation of blood pressure (BP) as they aid the function of macronutrients and also improve the anti-hypertensive functions of some anti-hypertensive agents. Even though several studies have demonstrated the beneficial effects of micronutrients on controlling BP, still some ambiguity exists among the nutritionists/doctors, which combination or individual mineral (dietary approach) contributes to better BP regulation. Therefore, this critical review article was attempted to delineate the underlying role of micronutrients (minerals and vitamins) for the management and prevention or delaying of HT and their related complications with strong affirmation from clinical trials as well as its mechanism of controlling BP. Moreover, the major source and recommended daily allowance (RDA) of various micronutrients are included in this review for guiding common readers (especially HT subjects) and dieticians to choose/recommend a better micronutrient and their combinations (other nutrients and standard anti-hypertensive drugs) for lowering the risk of HT and its related co-morbid conditions like CVDs.


2022 ◽  
Vol 4 (1) ◽  
pp. 013-018
Author(s):  
Mohini Chandrashekhar Upadhye ◽  
Mohini Chetan Kuchekar ◽  
Rohini Revansiddhappa Pujari ◽  
Nutan Uttam Sable

Biopolymers are compounds prepared by using various living organisms, including plants. These are composed of repeated units of the same or similar structure (monomers) linked together. Rubber, starch, cellulose, proteins and DNA, RNA, chitin, and peptides are some of the examples of natural biopolymers. Biopolymers are a diverse and remarkably versatile class of materials that are either produced by biological systems or synthesize from biological sources. Biopolymers are used in pharmaceutical industry and also in food industry.Naturally derived polymers are also used for conditioning benefits in hair and skin care. Biopolymers have various applications in medicine, food, packaging, and petroleum industries. This review article is focused on various aspects of biopolymers with a special emphasis on role of biopolymers in green nanotechnology and agriculture.


2019 ◽  
Vol 19 (19) ◽  
pp. 1611-1626 ◽  
Author(s):  
Xiang-Li Bai ◽  
Xiu-Ling Deng ◽  
Guang-Jie Wu ◽  
Wen-Jing Li ◽  
Si Jin

Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Luciana A. Campos ◽  
Jose Cipolla-Neto ◽  
Fernanda G. Amaral ◽  
Lisete C. Michelini ◽  
Michael Bader ◽  
...  

Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 307
Author(s):  
Diaa T. A. Youssef ◽  
Hadeel Almagthali ◽  
Lamiaa A. Shaala ◽  
Eric W. Schmidt

Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it belongs to the most speciose family (Didemnidae). The genus Didemnum includes the species D. molle, D. chartaceum, D. albopunctatum, and D. obscurum, as well as others, which are well known for their chemically diverse secondary metabolites. To date, investigators have reported secondary metabolites, usually including bioactivity data, for at least 69 members of the genus Didemnum, leading to isolation of 212 compounds. Many of these compounds exhibit valuable biological activities in assays targeting cancers, bacteria, fungi, viruses, protozoans, and the central nervous system. This review highlights compounds isolated from genus Didemnum through December 2019. Chemical diversity, pharmacological activities, geographical locations, and applied chemical methods are described.


2019 ◽  
Vol 25 (24) ◽  
pp. 2626-2636 ◽  
Author(s):  
Palaniappan Sivasankar ◽  
Subramaniam Poongodi ◽  
Palaniappan Seedevi ◽  
Dharman Kalaimurugan ◽  
Murugesan Sivakumar ◽  
...  

Nanoparticles have gained significant importance in the past two decades, due to their multifaceted applications in the field of nanomedicine. As our ecosystems and habitats are changing due to global warming, many new diseases are emerging continuously. Treating these costs a lot of money and mostly ends up in failure. In addition, frequent use of antibiotics to control the emerging diseases has led the pathogens to develop resistance to antibiotics. Hence, the nanoparticles are targeted to treat such diseases instead of the costly antibiotics. In particular, the biosynthesized nanoparticles have received considerable attention due to their simple, eco-friendly and promising activity. To highlight, microbial mediated nanoparticles have been found to possess higher activity and thus have a promising role in antimicrobial therapy to fight against the emerging drug-resistant pathogens. In this context, this review article is aimed at highlight the role of nanoparticles in the field of nanomedicine and importance of actinobacteria in the nanoparticle synthesis and their need in antimicrobial therapy. This is a comprehensive review, focusing on the potential of actinobacteria-mediated nanoparticles in the field of nanomedicine.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 4
Author(s):  
Lukáš Huml ◽  
Jan Tauchen ◽  
Silvie Rimpelová ◽  
Barbora Holubová ◽  
Oldřich Lapčík ◽  
...  

Anabolic-androgenic steroids (AASs), a group of compounds frequently misused by athletes and, unfortunately, also by the general population, have lately attracted global attention; thus, significant demands for more precise, facile, and rapid AAS detection have arisen. The standard methods ordinarily used for AAS determination include liquid and gas chromatography coupled with mass spectrometry. However, good knowledge of steroid metabolism, pretreatment of samples (such as derivatization), and well-trained operators of the instruments are required, making this procedure expensive, complicated, and not routinely applicable. In the drive to meet current AAS detection demands, the scientific focus has shifted to developing novel, tailor-made approaches leading to time- and cost-effective, routine, and field-portable methods for AAS determination in various matrices, such as biological fluids, food supplements, meat, water, or other environmental components. Therefore, herein, we present a comprehensive review article covering recent advances in AAS determination, with a strong emphasis on the increasingly important role of chemically designed artificial sensors, biosensors, and antibody- and fluorescence-based methods.


2013 ◽  
Vol 17 (3) ◽  
pp. 153-172 ◽  
Author(s):  
Neel Malhotra ◽  
Marlene Dytoc

Background: Vitiligo is a commonly encountered pigmentary disorder. Numerous studies and investigations from all over the world have attempted to determine the mechanisms behind this disease; however, the pathogenesis of vitiligo remains elusive. Objective: In this comprehensive review article, we present the findings behind the five overarching theories of what causes this disfiguring and psychologically debilitating disease. Method: We begin our discussion with the role of genetic predisposition and move onward to the neural theory first proposed in the 1950s. Next we discuss the autoimmune hypothesis, followed by the reactive oxygen species model, and conclude by describing the findings of the more recent melanocytorrhagy hypothesis. Conclusion: Although the exact pathogenesis of vitiligo is uncertain, each of these theories likely plays a role. Understanding each theory would pave the way for therapeutic advances for this disease.


2019 ◽  
Vol 16 (7) ◽  
pp. 631-652 ◽  
Author(s):  
Akhil Mahajan ◽  
Tejpal Singh Chundawat

Quinoline stands out amongst the most essential N-based heterocyclic biologically active compounds. Friedlieb Ferdinand Runge was first to isolate quinoline from coal tar in 1834. Chemical component, quinine found in the bark of cinchona tree was used for treatment of malaria in the year of 1820. Quinoline derivatives have been found to exhibit different therapeutic activities such as antimalarial, antibacterial, antifungal, antiplatelet, anticancer, antitubercular, etc. There are a couple of promising compounds with the Quinoline skeleton like Pamaquine, Chloroquine, Tafenoquine, Bulaquine, Quinine and Mefloquine which show Antimalarial activity. All the methodologies in last decade had been covered to provide a comprehensive review on the development of Quinoline analogs using metal catalyst. Since quinoline and its auxiliaries have extensive pharmacological activities and are moreover utilized as ligands in various metal complexes, various procedures have been now and again reported for their synthesis. We have tried here undertaking to collect a huge part of the procedure that has been represented in the written work by use of metal driving force. This review will be especially profitable to the examiner in quick exploring and developing another ecopleasing, capable and judicious protocol.


Sign in / Sign up

Export Citation Format

Share Document