scholarly journals Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution

2016 ◽  
Vol 52 (1) ◽  
pp. 53-61 ◽  
Author(s):  
S. Kozuh ◽  
L. Vrsalovic ◽  
M. Gojic ◽  
S. Gudic ◽  
B. Kosec

The corrosion behavior of NiTi alloy and stainless steels (AISI 316L and X2CrNiMoN22-5-3) in 0.9% sodium chloride (0.154 moll-1) solution was investigated using open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Microstructural analyses before and after electrochemical tests were performed with the scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The lowest corrosion current density has NiTi alloy and the extent of the passive range increased in the order AISI 316L stainless steel < NiTi alloy < X2CrNiMoN22-5-3 duplex stainless steel. The oxide film formed on all samples has a double-layer structure consisting of a barrier-type inner layer and a porous outer layer. Oxide films formed on the surface of steels mainly contains iron oxides and chromium oxide, while the surface film of the NiTi alloy mainly contains TiO2 oxide.

2016 ◽  
Vol 835 ◽  
pp. 131-135 ◽  
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

Stainless steel (SS) is one of the most commonly used metallic food contact materials. It may be classified based on its microstructure whether ferritic, austenitic, martensitic, duplex or precipitation hardened. Austenitic SS, among mentioned grades, has the largest contribution to market due to its numerous industrial and domestic applications. In this study, the corrosion behavior of AISI 202 SS – a cheaper grade of stainless steel, in three different solution temperatures of citric acid was investigated using different electrochemical techniques such as open-circuit potential (OCP) measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results were compared to that obtained from conventional AISI 304 SS. OCP, polarization and impedance measurements agreed that AISI 202 SS has comparable resistance to that of AISI 304 SS in citric acid at ambient temperature and at 50 °C. At 70 °C, results of OCP measurements suggest that AISI 304 SS exhibited greater performance as indicated by more positive OCP values in the designated solution. EIS results indicate that the two alloys have identical corrosion resistance even at 70 °C as indicated by their comparable polarization resistance (Rp). The corrosion mechanism in both alloys is charge-transfer controlled as indicated by depressed semi-circular appearance of the generated Nyquist plots. The values of corrosion current densities (icorr) extracted from polarization curves indicate that the initial corrosion rates were higher in AISI 304 than AISI 202 SS suggesting that formation of more protective film may have occurred on the former alloy.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 988
Author(s):  
Lidija Ćurković ◽  
Helena Otmačić Ćurković ◽  
Irena Žmak ◽  
Mihone Kerolli Mustafa ◽  
Ivana Gabelica

In this work, a single-layer TiO2–ZrO2 thin film is deposited on the AISI 316L austenitic stainless steel by the sol–gel process and the dip coating method to improve its corrosion resistance properties. For the sol preparation, titanium isopropoxide and zirconium butoxide are used as the precursors, yttrium acetate hydrate is used for the ZrO2 stabilization, i-propanol as the solvent, nitric acid as the catalyst, acetylacetone as the chelating agent, and the distilled water for the hydrolysis. The deposited films are annealed at 400 °C or 600 °C. Morphology and phase composition of the sol–gel TiO2–ZrO2 films and powders are analyzed by scanning electron microscopy (SEM) equipped with EDX detector and X-ray diffraction (XRD), respectively. The thickness of the sol–gel TiO2–ZrO2 films deposited on the stainless steel is determined by glow discharge optical emission spectrometry (GD-OES). The corrosion behavior of the stainless steel, coated by amorphous films, is evaluated in 3 wt% NaCl and 0.5 mol dm−3 HCl by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the sol–gel TiO2–ZrO2 films with the amorphous structure, deposited by the sol–gel process, and calcined at 400 °C significantly enhance the corrosion properties of AISI 316L in both chloride media.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Alvaro A. Rodriguez ◽  
Joseph H. Tylczak ◽  
Michael C. Gao ◽  
Paul D. Jablonski ◽  
Martin Detrois ◽  
...  

The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.


2021 ◽  
Vol 63 (6) ◽  
pp. 505-511
Author(s):  
Songkran Vongsilathai ◽  
Anchaleeporn Waritswat Lothongkum ◽  
Gobboon Lothongkum

Abstract A new duplex 25Cr-3Ni-7Mn-0.66 N alloy was prepared in a vacuum arc re-melting furnace and characterized by metallographic and EPMA methods. Its corrosion behavior was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a Mott-Schottky (M-S) analysis in artificial seawater at room temperature and compared with those of super and normal commercial duplex stainless steel (SDSS and DSS). No significant difference in the open circuit potentials and pitting potentials was observed. Its passive film current density lies between those of SDSS and DSS. This was confirmed by EIS analysis. A pit attack was observed on the δ-phase for all duplex samples, because the PREN16 of the δ-phase was lower than that of the γ-phase. From the Mott-Schottky analysis, the passive films were found to be composed of bi-layer structures, a p-type semiconductor inner layer, and a n-type semiconductor outer layer. The degree of defect as well as the effect of nitrogen in passive film layer are discussed with respect to the point defect model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yucong Ma ◽  
Mohd Talha ◽  
Qi Wang ◽  
Zhonghui Li ◽  
Yuanhua Lin

Purpose The purpose of this paper is to study systematically the corrosion behavior of AZ31 magnesium (Mg) alloy with different concentrations of bovine serum albumin (BSA) (0, 0.5, 1.0, 1.5, 2.0 and 5.0 g/L). Design/methodology/approach Electrochemical impedance spectroscopy and potential dynamic polarization tests were performed to obtain corrosion parameters. Scanning electrochemical microscopy (SECM) was used to analyze the local electrochemical activity of the surface film. Atomic force microscope (AFM), Scanning electron microscope-Energy dispersive spectrometer and Fourier transform infrared spectroscopy were used to determine the surface morphology and chemical composition of the surface film. Findings Experimental results showed the presence of BSA in a certain concentration range (0 to 2.0 g/L) has a greater inhibitory effect on the corrosion of AZ31, however, the presence of high-concentration BSA (5.0 g/L) would sharply reduce the corrosion resistance. Originality/value When the concentration of BSA is less than 2.0 g/L, the corrosion resistance of AZ31 enhances with the concentration. The adsorption BSA layer will come into being a physical barrier to inhibit the corrosion process. However, high-concentration BSA (5.0 g/L) will chelate with dissolved metal ions (such as Mg and Ni) to form soluble complexes, which increases the roughness of the surface and accelerates the corrosion process.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


CORROSION ◽  
10.5006/2674 ◽  
2018 ◽  
Vol 74 (9) ◽  
pp. 1011-1022 ◽  
Author(s):  
Megan Mahrokh Dorri ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
Pascale Chevallier ◽  
Diego Mantovani

Localized corrosion constitutes a major concern in medical devices made of stainless steel. The conventional approach to circumvent such a problem is to convert the surface polycrystalline microstructure of the native oxide layer to an amorphous oxide layer, a few micrometers thick. This process cannot, however, be used for devices such as stents that undergo plastic deformation during their implantation, especially those used in vascular surgery for the treatment of cardiac, neurological, and peripheral vessels. This work explores the feasibility of producing a nano-thick plastic-deformation resistant amorphous oxide layer by plasma-based surface modifications. By varying the plasma process parameters, oxide layers with different features were produced and their properties were investigated before and after clinically-relevant plastic deformation. These properties and the related corrosion mechanisms were mainly evaluated using the electrochemical methods of open-circuit potential, cyclic potentiodynamic polarization, and electrochemical impedance spectroscopy. Results showed that, under optimal conditions, the resistance to corrosion and to the permeation of ions in a phosphate buffered saline, even after deformation, was significantly enhanced.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6790
Author(s):  
Viera Zatkalíková ◽  
Juraj Halanda ◽  
Dušan Vaňa ◽  
Milan Uhríčik ◽  
Lenka Markovičová ◽  
...  

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 686 ◽  
Author(s):  
Asunción Bautista ◽  
Francisco Velasco ◽  
Manuel Torres-Carrasco

The durability of two lean corrugated duplex stainless steel (UNS S32304 and S32001) bars manufactured for concrete reinforcement was studied in four different corrosive conditions. These duplex stainless steels are more economical than the most traditional, well-known duplex grade steels (UNS S32205). The research was carried out in mortar samples for six years. In half of the samples, the alkaline reserve had been previously decreased, and their pH was slightly below 12, while in the other half, the pH close to the bars remained as-manufactured. Moreover, there were samples with modified and non-modified alkaline reserve where chlorides had been previously added to the mortar which were exposed to high relative humidity. In other samples—which were partially immersed in 3.5% NaCl—the chlorides entered through the mortar by natural diffusion. The electrochemical behavior of the reinforcements in these conditions was periodically monitored through corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) measurements during the whole testing period. The samples were anodically polarized at the end of the exposure. The results prove that the decrease in the alkaline reserve of the mortars can affect the corrosion behavior of the studied lean duplex in environments with high chloride concentrations. The duplex microstructure of the reinforcements makes it so that the corrosion proceeds by selective attack of the phases.


Sign in / Sign up

Export Citation Format

Share Document