Biogenic metallic nanoparticles and their anticancer activities: Biotechnological perspectives

2021 ◽  
Vol 16 (11) ◽  
pp. 177-185
Author(s):  
Praveen Pathak ◽  
Chandra Kant Sharma

Cancer is considered to be a dreaded disease throughout the world. There are many different types of drugs available to treat this disease. Nowadays, scientists are engaged to develop drugs at the nanoscale. The nano-drugs are found to exhibit more efficiency and accuracy. Nanotechnology is an emerging technology dealing with the development of nano-particles and nanostructures. These substances have acquired significance because of their size, shape and potential efficiency as well as specificity. Nano-particles mediated drugs were very focusing, emerging objective regarding the use of different types of nanoparticles as carrier to treat cancerous tumors and cancer cells. Medicinal lysis or synthesis of nanoparticles with biological procedures has become very much significant due to their specific efficacy and lesser harms compared to other available medicines used for cancer. In this review, green plants, their active compounds and metallic nano-particles are discussed with emphasis on their anticancer activities and properties.

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Heena Ali ◽  
Ubaid Yaqoob

Abstract Background The genus Arisaema (Areaceae), popularly known as cobra lilies and jack in pulpit is mainly found in temperate to tropical areas of all continents except South America, Europe and Australia and contain about more than 250 species. Arisaema genus is being used by the different folks of human populations for medicinal as well as food purposes. Arisaema plants are used for the treatment of different types of diseases. There have been several attempts to highlight different aspects of genus Arisaema by describing it in terms of phytochemistry and medicinal uses. The present study is, however, an attempt to put together all the former data available related to the phytochemistry and medicinal uses of genus Arisaema. Main body The phytochemicals of the plant include alkaloids, phenols, terpenes, flavonoids, lectins, saponins, glycosides, triterpenoids, stigmasterols, n-alkanes, n-alkanols sitosterols, campesterol, oxalates, coumarins, tannins etc. Moreover, the properties such as antioxidant, antifungal, antibacterial, insecticidal, antimicrobial, cytotoxic, nematocidal, antiallergic antitumour and anticancer activities are also shown by the plants belonging to genus Arisaema. Arisaema plants have been traditionally used to treat various ailments such as resolving phlegm, dampness, and to treat asthma, bronchitis, cold, cough, and laryngitis etc. It has been found that there are several species which are toxic by nature. The development of clinical applications of arisaematis rhizomes had been seriously constrained due to its toxic properties like, mouth and lingua pain, even respiration slowing and suffocation, mucous membrane and skin irritation etc. and this toxicity of arisaematis rhizomes is due to raphide components. Conclusions The collection of data available on the phytochemistry of genus Arisaema is not sufficient as further work is required to do on phytochemical and medicinal basis. The data available on phytochemistry and medicinal properties of the plants belonging to genus Arisaema throws light on various species of Arisaema which are medicinally important and have been exploited to treat different types of diseases in the world.


2021 ◽  
Author(s):  
Sunil T. Galatage ◽  
Aditya S. Hebalkar ◽  
Shradhey V. Dhobale ◽  
Omkar R. Mali ◽  
Pranav S. Kumbhar ◽  
...  

Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 761 ◽  
Author(s):  
Roberta Peruzzo ◽  
Ildiko Szabo

Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.


Author(s):  
Christian Bailly

The plant Walsura robusta Roxb. (Meliaceae) is a robust tree largely distributed in south-east Asia, including provinces of southern China. A few traditional usages of the plant have been mentioned, notably for the treatment of microbial infections. But experimental studies using different types of plant extracts only revealed modest antibacterial effects, and no major antiparasitic activity. Walsura robusta Roxb. is a rich source of secondary metabolites. Several series of limonoids have been isolated from the leaves or the fruits of the plant, such as walsuronoid A-I, walsurins A-E, walsunoids A-I, walrobsins A-R and other cedrelone- or dihydrocedrelone-type limonoids, in addition to a few other terpenoids. All information about Walsura robusta Roxb. have been collated in this brief review. The analysis underlines the presence of two limonoids endowed with significant anticancer activities, walsuronoid B and cedrelone. They both activate the production of reactive oxygen species in cancer cells, modulate mitochondrial activities and induce apoptosis of cancer cells. Their molecular targets and mechanism of action are discussed. Walsura robusta Roxb. has a potential for the development of anticancer natural products. The use of the plant extracts could be further considered for the treatment of diseases with a cell proliferation component.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Pasupuleti Visweswara Rao ◽  
Devi Nallappan ◽  
Kondeti Madhavi ◽  
Shafiqur Rahman ◽  
Lim Jun Wei ◽  
...  

Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.


Author(s):  
Abdul Nasir ◽  
Amir Khan ◽  
Jiayi Li ◽  
Muhammad Naeem ◽  
Atif Ali Khan Khalil ◽  
...  

: Nanotechnology has shown promising advancements in the field of drug development and its delivery. In particular, the applications of nanoparticles for treatment and diagnostics of cancer reached such a precision that it can detect a single cancer cell and can target it to deliver a payload for the treatment of that cancerous cell. Conventional cancer therapy methods have side effects, and diagnostics techniques are time-consuming and expensive. Nanoparticles (NPs) such as polymeric nanoparticles (nanogels, nanofibers, liposomes), metallic nanoparticles such as gold NP (GNPs), sliver NP (AgNP), calcium nanoparticles (CaNPs), carbon nanotubes (CNTs), graphene, and quantum dots (QDs) have revolutionized cancer diagnostics and treatments due to their high surface charge, size and morphology. Functionalization of these nanoparticles with different biological molecules, such as antibodies, helps them to targeted the delivery and early detection of cancer cells through their plasmon resonance properties. While some of the magnetic properties of nanoparticles such as iron (Fe), copper (Cu), and carbon NT were also evaluated for detection and treatments of cancer cells. An advanced type of nanoparticles, such as nanobubbles and oxygen-releasing polymers, are helping to address the hypoxia conditions in the cancer microenvironment, while others are employed in photodynamic therapy (PDT) and photothermal therapy (PTT) due to their intrinsic theranostic properties. The green synthesis of nanoparticles has further increased biocompatibility and broadened their applications. In this review paper, we discussed the advancement in nanotechnology and its applications for cancer treatment and diagnostics and highlighted challenges for translation of these advanced nano-based techniques for clinical applications and their green synthesis.


Author(s):  
Y. Arockia Suganthi ◽  
Chitra K. ◽  
J. Magelin Mary

Dengue fever is a painful mosquito-borne infection caused by different types of virus in various localities of the world. There is no particular medicine or vaccine to treat person suffering from dengue fever. Dengue viruses are transmitted by the bite of female Aedes (Ae) mosquitoes. Dengue fever viruses are mainly transmitted by Aedes which can be active in tropical or subtropical climates. Aedes Aegypti is the key step to avoid infection transmission to save millions of people in all over the world. This paper provides a standard guideline in the planning of dengue prevention and control measures. At the same time gives the priorities including clinical management and hospitalized dengue patients have to address essentially.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2019 ◽  
Vol 15 (5) ◽  
pp. 550-560
Author(s):  
Mateusz D. Tomczyk ◽  
Anna Byczek-Wyrostek ◽  
Klaudia Strama ◽  
Martyna Wawszków ◽  
Przemysław Kasprzycki ◽  
...  

Background: The substituted 1,8-Naphthalimides (1H-benzo[de]isoquinoline-1,3(2H)- diones) are known as DNA intercalators stabilizing DNA-Topoisomerase II complexes. This interaction disrupts the cleavage-relegation equilibrium of Topo II, resulting in formation of broken strands of DNA. Objective: To investigate the influence of type of substituents and substitution positions in 1,8- naphthalimde skeleton on the inhibition of Topoisomerase II activity. Methods: The starting 1,8-naphthalimide were prepared from acenaphthene by introduction of appropriate substituents followed by condensation with ω-hydroxylakylamines of different chain length. The substituents were introduced to 1,8-naphthalimide molecule by nucleophilic substitution of leaving groups like nitro or bromo present in 4 or 4,5- positions using the ω- hydroxylalkylamines. The bioactivity of obtained compounds was examined in model cell lines. Results: Antiproliferative activity of selected compounds against HCT 116 human colon cancer cells, human non-small cell lung cells A549 and non-tumorigenic BEAS-2B human bronchial epithelium cells was examined. Several of investigated compounds exhibit a significant activity (IC50 µM to 7 µM) against model cancer cell lines. It was demonstrated that upon treatment with concentration of 200 µM, all derivatives display Topo II inhibitory activity, which may be compared with activity of Amonafide. Conclusion: The replacement of the nitro groups in the chromophore slightly reduces its anticancer activities, whereas the presence of both nitro group and ω-hydroxylalkylamine chain resulted in seriously increased anticancer activity. Obtained compounds showed Topo II inhibitory activity, moreover, influence of the substitution pattern on the ability to inhibit Topo II activity and cancer cells proliferation was observed.


Author(s):  
Amer Imraish ◽  
Afnan Al-Hunaiti ◽  
Tuqa Abu-Thiab ◽  
Abed Al-Qader Ibrahim ◽  
Eman Hwaitat ◽  
...  

Background: The growing unsatisfaction toward the available traditional chemotherapeutic agents enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment friendly properties and wide range applications. To overcome the obstacles of traditional physical and chemical methods for synthesis of such nanoparticles, a new less expensive and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. Objective: Here in the present study, zinc iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia Carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. Methods: Various analytic methods were applied for the characterization of the Phyto synthesized ZnFe2O4 and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines and normal fibroblasts. Results: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter 10.54 nm. MTT cytotoxicity assay demonstrate that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. Conclusion: In conclusion, our bio synthesized ZnFe2O4 nano particles show a promising environmentally friendly of low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further in vivo advanced animal research should be done to execute their applicability in living organisms.


Sign in / Sign up

Export Citation Format

Share Document