scholarly journals Controlled Release of Model Substances from pH-Sensitive Hydrogels

Author(s):  
David Quintanar-Guerrero ◽  
Briza Nadyr Zorraquín-Cornejo ◽  
Adriana Ganem-Rondero ◽  
Elizabeth Piñón-Segundo ◽  
María Guadalupe Nava-Arzaluz ◽  
...  

pH-Sensitive hydrogels of the poly(methacrylic acid-comethyl methacrylate) (MAA/MMA) type, 22/78 molar % with different cross-linking percentages (0.3 and 0.5%) were synthesized. These gels were loaded with a model hydrophilic compound (dichlorobromophenol blue dye, DCBFB) with the aim of evaluating its release at different pH values (1.2, 5.0, 6.8, 7.4). The swelling degree and the release from these hydrogels are highly dependent on the pH of the dissolution medium and on the cross-linking degree. Scanning electron microscopy and differential scanning calorimetry studies demonstrated that part of the dye is embedded in crystal form within the hydrogel. The release profiles of the hydrogels assessed at pH = 6.8 and 7.4 were adjusted to the Higuchi model, regarding them asmatrix delivery systems.      

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 773
Author(s):  
Jyun-Yan Ye ◽  
Kuo-Fu Peng ◽  
Yu-Ning Zhang ◽  
Szu-Yuan Huang ◽  
Mong Liang

A series of N-substituted polyether-block-amide (PEBA-X%) copolymers were prepared by melt polycondensation of nylon-6 prepolymer and polytetramethylene ether glycol at an elevated temperature using titanium isopropoxide as a catalyst. The structure, thermal properties, and crystallinity of PEBA-X% were investigated using nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, wide angle X-ray diffraction, and thermogravimetric analysis. In general, the crystallinity, melting point, and thermal degradation temperature of PEBA-X% decreased as the incorporation of N-methyl functionalized groups increased, owing to the disruption caused to the structural regularity of the copolymer. However, in N-acetyl functionalized analogues, the crystallinity first dropped and then increased because of a new γ form arrangement that developed in the microstructure. After the cross-linking reaction of the N-methyl-substituted derivative, which has electron-donating characteristics, with poly(4,4′-methylenebis(phenyl isocyanate), the decomposition temperature of the resulting polymer significantly increased, whereas no such improvements could be observed in the case of the electro-withdrawing N-acetyl-substituted derivative, because of the incompleteness of its cross-linking reaction.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1706
Author(s):  
Elena Olăreț ◽  
Brîndușa Bălănucă ◽  
Andra Mihaela Onaș ◽  
Jana Ghițman ◽  
Horia Iovu ◽  
...  

Mucin is a glycoprotein with proven potential in the biomaterials field, but its use is still underexploited for such applications. The present work aims to produce a synthesis of methacryloyl mucin single-network (SN) hydrogels and their double-cross-linked-network (DCN) counterparts. Following the synthesis of the mucin methacryloyl derivative, various SN hydrogels are prepared through the photopolymerization of methacrylate bonds, using reaction media with different pH values. The SN hydrogels are converted into DCN systems via supplementary cross-linking in tannic acid aqueous solution. The chemical modification of mucin is described, and the obtained product is characterized; the structural modification of mucin is assessed through FTIR spectroscopy, and the circular dichroism and the isoelectric point of methacryloyl mucin is evaluated. The affinity for aqueous media of both SN and DCN hydrogels is estimated, and the mechanical properties of the systems are assessed, both at macroscale through uniaxial compression and rheology tests and also at microscale through nanoindentation tests.


1993 ◽  
Vol 296 (2) ◽  
pp. 489-496 ◽  
Author(s):  
A J Bailey ◽  
T J Sims ◽  
N C Avery ◽  
C A Miles

The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or ‘strength’) was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is taking place.


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2223
Author(s):  
Moises Bustamante-Torres ◽  
Victor H. Pino-Ramos ◽  
David Romero-Fierro ◽  
Sandra P. Hidalgo-Bonilla ◽  
Héctor Magaña ◽  
...  

The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xinlei Jia ◽  
Jingyu Wang ◽  
Conghua Hou ◽  
Yingxin Tan

Herein, a green process for preparing nano-HMX, mechanical demulsification shearing (MDS) technology, was developed. Nano-HMX was successfully fabricated via MDS technology without using any chemical reagents, and the fabrication mechanism was proposed. Based on the “fractal theory,” the optimal shearing time for mechanical emulsification was deduced by calculating the fractal dimension of the particle size distribution. The as-prepared nano-HMX was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). And the impact sensitivities of HMX particles were contrastively investigated. The raw HMX had a lower fractal dimension of 1.9273. The ideal shearing time was 7 h. The resultant nano-HMX possessed a particle size distribution ranging from 203.3 nm to 509.1 nm as compared to raw HMX. Nano-HMX particles were dense spherical, maintaining β-HMX crystal form. In addition, they had much lower impact sensitivity. However, the apparent activation energy as well as thermal decomposition temperature of nano-HMX particles was decreased, attributing to the reduced probability for hotspot generation. Especially when the shearing time was 7 h, the activation energy was markedly decreased.


2013 ◽  
Vol 746 ◽  
pp. 363-368
Author(s):  
S.K.M. Jamaria ◽  
K. Rameshb ◽  
B. Vengadaesvaranc ◽  
S. Rameshd ◽  
S.R. Raue ◽  
...  

Coating systems consist of acrylic polyol resin and silicone intermediate resins were tested for their corrosion resistance properties. The corrosion protection property of the coating was evaluated by using Electrochemical Impedance Spectroscopy (EIS) which showed that system with 70 % of acrylic has the highest corrosion resistance. The maximum value of corrosion resistance obtained was found to be 1.40 x 109Ω on the 30thday for the 70 % of acrylic sample. The glass transition temperature (Tg) obtained using the Differential Scanning Calorimetry (DSC) were in the range of 23 °C to 65 °C. It showed that all samples are suitable for decorative paints, general industrial coatings and floor care coatings. The functional groups and also the cross-linking between the organic resins were analyzed using Fourier Transform Infra-Red Spectroscopy.


2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.


2018 ◽  
Vol 7 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Norbert Halmen ◽  
Christoph Kugler ◽  
Eduard Kraus ◽  
Benjamin Baudrit ◽  
Thomas Hochrein ◽  
...  

Abstract. The degree of cross-linking and curing is one of the most important values concerning the quality of cross-linked polyethylene (PE-X) and the functionality of adhesives and resin-based components. Up to now, the measurement of this property has mostly been time-consuming and usually destructive. Within the shown work the feasibility of single-sided nuclear magnetic resonance (NMR) for the non-destructive determination of the degree of cross-linking and curing as process monitoring was investigated. First results indicate the possibility of distinguishing between PE-X samples with different degrees of cross-linking. The homogeneity of the samples and the curing kinetics of adhesives can also be monitored. The measurements show good agreement with reference tests (wet chemical analysis, differential scanning calorimetry, dielectric analysis). Furthermore, the influence of sample temperature on the characteristic relaxation times can be observed.


Author(s):  
EMMANUEL O. OLORUNSOLA ◽  
IMO E. UDOH ◽  
STEPHEN O. MAJEKODUNMI ◽  
INIOBONG J. ODIONG ◽  
UWAKMFON O. EBONG

Objective: This work was aimed at formulating omeprazole tablets using afzelia gum as a binder that is capable of inhibiting the gastric degradation of the drug. Methods: Afzelia gum at different concentrations of 0, 5, 10, 15, 20 and 30% was used as a binder to formulate omeprazole tablets. The tablets were formulated by direct compression and the batches labelled F1 to F6 respectively. A batch containing 15% hydroxypropyl methylcellulose (F7) was also formulated. The tablets were characterized; and dissolution in a pH 1.2 dissolution medium over 120 min period was studied. Aliquots taken every 20 min were analyzed by ultraviolet spectrophotometry to determine the amount of drug released and not degraded. Results: Amounts of drug released and not degraded at time 120 min were 53.1%, 57.3%, 57.8%, 58.8%, 62.1%, 83.4% and 90.0% for F1 to F7 respectively. Conclusion: Afzelia gum at a concentration of 30% is suitable for use as a binder in tablet formulation of omeprazole to ensure substantial inhibition of gastric degradation of the drug.


Sign in / Sign up

Export Citation Format

Share Document