scholarly journals Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis

Author(s):  
Liujing Huang ◽  
Bingdong Liu ◽  
Zhihong Liu ◽  
Wanqin Feng ◽  
Minjuan Liu ◽  
...  

The diagnosis of endometriosis is typically delayed by years for the unexclusive symptom and the traumatic diagnostic method. Several studies have demonstrated that gut microbiota and cervical mucus potentially can be used as auxiliary diagnostic biomarkers. However, none of the previous studies has compared the robustness of endometriosis classifiers based on microbiota of different body sites or demonstrated the correlation among microbiota of gut, cervical mucus, and peritoneal fluid of endometriosis, searching for alternative diagnostic approaches. Herein, we enrolled 41 women (control, n = 20; endometriosis, n = 21) and collected 122 well-matched samples, derived from feces, cervical mucus, and peritoneal fluid, to explore the nature of microbiome of endometriosis patients. Our results indicated that microbial composition is remarkably distinguished between three body sites, with 19 overlapped taxa. Moreover, endometriosis patients harbor distinct microbial communities versus control group especially in feces and peritoneal fluid, with increased abundance of pathogens in peritoneal fluid and depletion of protective microbes in feces. Particularly, genera of Ruminococcus and Pseudomonas were identified as potential biomarkers in gut and peritoneal fluid, respectively. Furthermore, novel endometriosis classifiers were constructed based on taxa selected by a robust machine learning method. These results demonstrated that gut microbiota exceeds cervical microbiota in diagnosing endometriosis. Collectively, this study reveals important insights into the microbial profiling in different body sites of endometriosis, which warrant future exploration into the role of microbiota in endometriosis and highlighted values on gut microbiota in early diagnosis of endometriosis.

2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2021 ◽  
Author(s):  
Lingxiong Chai ◽  
Qun Luo ◽  
Kedan Cai ◽  
Kaiyue Wang ◽  
Binbin Xu

Abstract Background: IgA nephropathy(IgAN)) is the common pathological type of glomerular diseases. The role of gut microbiota in mediating "gut-IgA nephropathy" has not received sufficient attention in the previous studies. The purpose of this study was to investigate the changes of fecal short-chain fatty acids(SCFAs), a metabolite of the intestinal microbiota, in patients with IgAN and its correlation with intestinal flora and clinical indicators, and to further investigate the role of the gut-renal axis in IgAN.Methods: There were 29 patients with IgAN and 29 normal control subjects recruited from January 2018 to May 2018. The fresh feces were collected. The fecal SCFAs were measured by gas chromatography/mass spectrometry and gut microbiota was analysed by16S rDNA sequences, followed by estimation of α- and β-diversity. Correlation analysis was performed using the spearman’s correlation test between SCFAs and gut microbiota. Results:The levels of acetic acid, propionic acid, butyric acid, isobutyric acid and caproic acid in the IgAN patients were significantly reduced compared with control group(P<0.05). Butyric acid(r=-0.336, P=0.010) and isobutyric acid(r=-0.298, P=0.022) were negatively correlated with urea acid; butyric acid(r=-0.316, P=0.016) was negatively correlated with urea nitrogen; caproic acid(r=-0.415,P=0.025) showed negative correlation with 24-h urine protein level.Exemplified by the results of α-diversity and β-diversity, the intestinal flora of IgAN patients was significantly different from that of the control group. Acetic acid was positively associated with c_Clostridia(r=0.357, P=0.008), o_Clostridiales(r=0.357, P=0.008) and g_Eubacterium_coprostanoligenes_group(r=0.283, P=0.036). Butyric acid was positively associated with g_Alistipes (r=0.278, P=0.040). The relative abundance of those were significantly decreased in IgAN group compared to control group.Conclusion: The levels of fecal SCFAs in the IgAN patients were reduced, and correlated with clinical parameters and gut microbiota, which may be involved in the pathogenesis of IgAN, and this finding may provide a new therapeutic approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Wanxin Liu ◽  
Ren Zhang ◽  
Rong Shu ◽  
Jinjing Yu ◽  
Huan Li ◽  
...  

A lot of previous studies have recently reported that the gut microbiota influences the development of colorectal cancer (CRC) in Western countries, but the role of the gut microbiota in Chinese population must be investigated fully. The goal of this study was to determine the role of the gut microbiome in the initiation and development of CRC. We collected fecal samples of 206 Chinese individuals: 59 with polyp (group P), 54 with adenoma (group A), 51 with colorectal cancer (group CC), and 42 healthy controls (group HC).16S ribosomal RNA (rRNA) was used to compare the microbiota community structures among healthy controls, patients with polyp, and those with adenoma or colorectal cancer. Our study proved that intestinal flora, as a specific indicator, showed significant differences in its diversity and composition. Sobs, Chao, and Ace indexes of group CC were significantly lower than those of the healthy control group (CC group: Sobs, Chao, and Ace indexes were 217.3 ± 69, 4265.1 ± 80.7, and 268.6 ± 78.1, respectively; HC group: Sobs, Chao, and Ace indexes were 228.8 ± 44.4, 272.9 ± 58.6, and 271.9 ± 57.2, respectively). When compared with the healthy individuals, the species richness and diversity of intestinal flora in patients with colorectal cancer were significantly reduced: PCA and PCoA both revealed that a significant separation in bacterial community composition between the CC group and HC group (with PCA using the first two principal component scores of PC1 14.73% and PC2 10.34% of the explained variance, respectively; PCoA : PC1 = 14%, PC2 = 9%, PC3 = 6%). Wilcox tests was used to analyze differences between the two groups, it reveals that Firmicutes (P=0.000356), Fusobacteria (P=0.000001), Proteobacteria (P=0.000796), Spirochaetes (P=0.013421), Synergistetes (P=0.005642) were phyla with significantly different distributions between cases and controls. The proportion of microorganism composition is varying at different stages of colon cancer development: Bacteroidetes (52.14%) and Firmicutes (35.88%) were enriched in the healthy individuals; on the phylum level, the abundance of Bacteroidetes (52.14%-53.92%-52.46%–47.06%) and Firmicutes (35.88%-29.73%-24.27%–25.36%) is decreasing with the development of health-polyp-adenomas-CRC, and the abundance of Proteobacteria (9.33%-12.31%-16.51%–22.37%) is increasing. PCA and PCOA analysis showed there was no significant (P<0.05) difference in species similarity between precancerous and carcinogenic states. However, the composition of the microflora in patients with precancerous lesions (including patients with adenoma and polyp) was proved to have no significant disparity (P<0.05). Our study provides insights into new angles to dig out potential biomarkers in diagnosis and treatment of colorectal cancer and to provide scientific advice for a healthy lifestyle for the sake of gut microbiota.


2019 ◽  
Vol 20 (1) ◽  
pp. 159 ◽  
Author(s):  
Radzisław Mierzyński ◽  
Elżbieta Poniedziałek-Czajkowska ◽  
Dominik Dłuski ◽  
Jolanta Patro-Małysza ◽  
Żaneta Kimber-Trojnar ◽  
...  

Gestational diabetes mellitus (GDM) is considered to be one of the most frequent medical complication observed among pregnant women. The role of adipokines in the pathogenesis of GDM remains strictly unknown. Different adipokines have been studied throughout gestation, and they have been proposed as biomarkers of GDM and other pregnancy-related complications; however, there is no biomarker reported for GDM screening at present. The aim of this study was to evaluate serum nesfatin-1 and vaspin levels in GDM and non-GDM women, to characterize the correlation between these adipokines, and to assess the potential role of circulating adipokines in the prediction of risk of gestational diabetes mellitus. Serum concentrations of nesfatin-1 and vaspin were measured in 153 women with GDM, and in 84 patients with uncomplicated pregnancy by enzyme-linked immunosorbent assay (ELISA) kits, according to the manufacturer’s instructions. Circulating levels of nesfatin-1 and vaspin were significantly lower in the GDM group than in the control group. Nesfatin-1 levels were negatively correlated with vaspin levels. The results of this study point out the possible role of nesfatin-1 and vaspin as potential novel biomarkers for the prediction and early diagnosis of GDM. Further studies are necessary to evaluate the influence of nesfatin-1 and vaspin on glucose metabolism in the early stages of GDM.


Author(s):  
Xing Heng ◽  
Yuanhe Jiang ◽  
Weihua Chu

Antibiotics which can treat or prevent infectious diseases play an important role in medical therapy. However, the use of antibiotics has potential negative effects on the health of the host. For example, antibiotics use may affect the host's immune system by altering the gut microbiota. Therefore, the aim of the study was to investigate the influence of antifungal (fluconazole) treatment on gut microbiota and immune system of mice. Results showed that gut microbial composition of mice receiving fluconazole treatment was significantly changed after the trial. Fluconazole did not affect the relative abundance of bacteria but significantly reduced the diversity of bacterial flora. In the Bacteriome, Firmicutes and Proteobacteria significantly increased, while Bacteroidetes, Deferribacteres, Patescibacteria, and Tenericutes showed a remarkable reduction in fluconazole treated group in comparison with the control group. In the mycobiome, the relative abundance of Ascomycota was significantly decreased and Mucoromycota was significantly increased in the intestine of mice treated with fluconazole compared to the control group. RT-qPCR results showed that the relative gene expression of ZO-1, occludin, MyD88, IL-1β, and IL-6 was decreased in fluconazole-treated group compared to the control. Serum levels of IL-2, LZM and IgM were significantly increased, while IgG level had considerably down-regulated in the fluconazole-treated compared to the control. These results suggest that the administration of fluconazole can influence the gut microbiota and that a healthy gut microbiome is important for the regulation of the host immune responses.


2019 ◽  
Vol 8 (7) ◽  
pp. 987 ◽  
Author(s):  
Lee ◽  
Byun ◽  
Kim

Acne is a highly prevalent inflammatory skin condition involving sebaceous sties. Although it clearly develops from an interplay of multiple factors, the exact cause of acne remains elusive. It is increasingly believed that the interaction between skin microbes and host immunity plays an important role in this disease, with perturbed microbial composition and activity found in acne patients. Cutibacterium acnes (C. acnes; formerly called Propionibacterium acnes) is commonly found in sebum-rich areas and its over-proliferation has long been thought to contribute to the disease. However, information provided by advanced metagenomic sequencing has indicated that the cutaneous microbiota in acne patients and acne-free individuals differ at the virulent-specific lineage level. Acne also has close connections with the gastrointestinal tract, and many argue that the gut microbiota could be involved in the pathogenic process of acne. The emotions of stress (e.g., depression and anxiety), for instance, have been hypothesized to aggravate acne by altering the gut microbiota and increasing intestinal permeability, potentially contributing to skin inflammation. Over the years, an expanding body of research has highlighted the presence of a gut–brain–skin axis that connects gut microbes, oral probiotics, and diet, currently an area of intense scrutiny, to acne severity. This review concentrates on the skin and gut microbes in acne, the role that the gut–brain–skin axis plays in the immunobiology of acne, and newly emerging microbiome-based therapies that can be applied to treat acne.


Pteridines ◽  
2004 ◽  
Vol 15 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Zdzislawa Kondera-Anasz ◽  
Justyna Sikora ◽  
Anna Mertas ◽  
Piotr Miciñski ◽  
Bartlomiej Bednarz

Abstract Endometriosis is a gynaecological disorder characterized by increased number and activation of peritoneal macrophages and release of macrophage-derived cytokines and growth factors. The aim of our work was t(5 study the level of neopterin and interleukin (TL)-10 in peritoneal fluid and serum of women with endometriosis in relation to stage of disease. Concentrations of neopterin and IL-10 were measured by enzyme linked immunosorbent assay in PF and serum of 58 women; 43 with endometriosis and 15 without endometriosis. In our study present of neopterin in PF of women with endometriosis whereas neopterin could not be detected in the control group. Neopterin serum concentrations were significantly higher in affected women compared with control. Significantly increased neopterin concentrations were observed in peritoneal fluid and serum of women with advanced endometriosis. The mean peritoneal fluid and serum IL-10 concentrations were significantly higher ainong studied women than control. In women with early endometriosis, significantly increased concentration of IL-10 in peritoneal fluid and serum was observed. In conclusions, both increased concentrations of neopterin and IL-10 in the peritoneal fluid and serum suggest an important role of these Compounds in pathogenesis of endometriosis and indicate an enhanced macrophage activity in this disease.


2015 ◽  
Vol 113 (5) ◽  
pp. 728-738 ◽  
Author(s):  
Tatiana M. Marques ◽  
Rebecca Wall ◽  
Orla O'Sullivan ◽  
Gerald F. Fitzgerald ◽  
Fergus Shanahan ◽  
...  

The main aim of the present study was to investigate the effects of dietary trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) on intestinal microbiota composition and SCFA production. C57BL/6 mice (n 8 per group) were fed a standard diet either supplemented with t10c12-CLA (0·5 %, w/w) (intervention) or with no supplementation (control), daily for 8 weeks. Metabolic markers (serum glucose, leptin, insulin and TAG, and liver TAG) were assessed by ELISA commercial kits, tissue long-chain fatty acids and caecal SCFA by GC, and microbial composition by 16S rRNA pyrosequencing. Dietary t10c12-CLA significantly decreased visceral fat mass (P< 0·001), but did not affect body weight (intervention), when compared with no supplementation (control). Additionally, lipid mass and composition were affected by t10c12-CLA intake. Caecal acetate, propionate and isobutyrate concentrations were higher (P< 0·05) in the t10c12-CLA-supplemented group than in the control group. The analysis of the microbiota composition following 8 weeks of t10c12-CLA supplementation revealed lower proportions of Firmicutes (P= 0·003) and higher proportions of Bacteroidetes (P= 0·027) compared with no supplementation. Furthermore, t10c12-CLA supplementation for 8 weeks significantly altered the gut microbiota composition, harbouring higher proportions of Bacteroidetes, including Porphyromonadaceae bacteria previously linked with negative effects on lipid metabolism and induction of hepatic steatosis. These results indicate that the mechanism of dietary t10c12-CLA on lipid metabolism in mice may be, at least, partially mediated by alterations in gut microbiota composition and functionality.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 896 ◽  
Author(s):  
Abdelmotaleb A. Elokil ◽  
Khaled F.M. Abouelezz ◽  
Hafiz I. Ahmad ◽  
Yuanhu Pan ◽  
Shijun Li

The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fang Chen ◽  
Yu Gan ◽  
Yingtao Li ◽  
Wenzhi He ◽  
Weizhen Wu ◽  
...  

Abstract Background Gestational diabetes mellitus (GDM), a common endocrine disorder with rising prevalence in pregnancy, has been reported to be associated with alteration of gut microbiota in recent years. However, the role of gut microbiome in GDM physiopathology remains unclear. This pilot study aims to characterize the alteration of gut microbiota in GDM on species-level resolution and evaluate the relationship with occurrence of GDM. Methods An analysis based on 16S rRNA microarray was performed on fecal samples obtained from 30 women with GDM and 28 healthy pregnant women. Results We found 54 and 141 differentially abundant taxa between GDM and control group at the genus and the species level respectively. Among GDM patients, Peptostreptococcus anaerobius was inversely correlated with fasting glucose while certain species (e.g., Aureimonas altamirensis, Kosakonia cowanii) were positively correlated with fasting glucose. Conclusions This study suggests that there are large amounts of differentially abundant taxa between GDM and control group at the genus and the species level. Some of these taxa were correlated with blood glucose level and might be used as biomarkers for diagnoses and therapeutic targets for probiotics or synbiotics.


Sign in / Sign up

Export Citation Format

Share Document