scholarly journals Role of Leptin in the Digestive System

2021 ◽  
Vol 12 ◽  
Author(s):  
Min-Hyun Kim ◽  
Hyeyoung Kim

Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.

2020 ◽  
Vol 13 ◽  
pp. 117864692093868
Author(s):  
Niklas Joisten ◽  
David Walzik ◽  
Alan J Metcalfe ◽  
Wilhelm Bloch ◽  
Philipp Zimmer

Emerging evidence highlights the substantial role of the kynurenine pathway in various physiological systems and pathological conditions. Physical exercise has been shown to impact the kynurenine pathway in response to both single (acute) and multiple (chronic) exercise training stimuli. In this perspective article, we briefly outline the current knowledge concerning exercise-induced modulations of the kynurenine pathway and discuss underlying mechanisms. Furthermore, we expose the potential involvement of exercise-induced kynurenine pathway modulations on energy homeostasis (eg, through de novo synthesis of NAD+) and finally suggest how these modulations may contribute to exercise-induced benefits in the prevention and treatment of chronic diseases.


2021 ◽  
Vol 22 (12) ◽  
pp. 6632
Author(s):  
Tatiana Wojciechowicz ◽  
Maria Billert ◽  
Mariami Jasaszwili ◽  
Mathias Z. Strowski ◽  
Krzysztof W. Nowak ◽  
...  

Neuropeptide B (NPB) is a peptide hormone that was initially described in 2002. In humans, the biological effects of NPB depend on the activation of two G protein-coupled receptors, NPBWR1 (GPR7) and NPBWR2 (GPR8), and, in rodents, NPBWR1. NPB and its receptors are expressed in the central nervous system (CNS) and in peripheral tissues. NPB is also present in the circulation. In the CNS, NPB modulates appetite, reproduction, pain, anxiety, and emotions. In the peripheral tissues, NPB controls secretion of adrenal hormones, pancreatic beta cells, and various functions of adipose tissue. Experimental downregulation of either NPB or NPBWR1 leads to adiposity. Here, we review the literature with regard to NPB-dependent control of metabolism and energy homeostasis.


2012 ◽  
Vol 3 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Christopher J. Madden ◽  
Domenico Tupone ◽  
Shaun F. Morrison

AbstractNon-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview, we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framework, we consider potential neural mechanisms underlying the pathological conditions associated with the absence of the central orexinergic modulation of BAT thermogenesis and energy expenditure. Overall, the experimental basis for our understanding of the role of central orexin in regulating body temperature and energy homeostasis provides an illustrative example that highlights several general principles and caveats that should help guide future investigations of the neurochemical regulation of thermogenesis and metabolism.


Author(s):  
Jiaying Wu ◽  
Yuyu Zhang ◽  
Hongyu Yang ◽  
Yuefeng Rao ◽  
Jing Miao ◽  
...  

Epilepsy is one of the most widespread serious neurological disorders, and an aetiological explanation has not been fully identified. In recent decades, a growing body of evidence has highlighted the influential role of autoimmune mechanisms in the progression of epilepsy. The hygiene hypothesis draws people’s attention to the association between gut microbes and the onset of multiple immune disorders. It is also believed that, in addition to influencing digestive system function, symbiotic microbiota can bidirectionally and reversibly impact the programming of extraintestinal pathogenic immune responses during autoimmunity. Herein, we investigate the concept that the diversity of parasitifer sensitivity to commensal microbes and the specific constitution of the intestinal microbiota might impact host susceptibility to epilepsy through promotion of Th17 cell populations in the central nervous system (CNS).


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1310
Author(s):  
Maria Rosaria Carillo ◽  
Carla Bertapelle ◽  
Filippo Scialò ◽  
Mario Siervo ◽  
Gianrico Spagnuolo ◽  
...  

L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Lattanzi ◽  
Cinzia Severini ◽  
Daniela Maftei ◽  
Luciano Saso ◽  
Aldo Badiani

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 741 ◽  
Author(s):  
Sumeyye Cavdarli ◽  
Philippe Delannoy ◽  
Sophie Groux-Degroote

O-acetylation of sialic acid residues is one of the main modifications of gangliosides, and modulates ganglioside functions. O-acetylation of gangliosides is dependent on sialyl-O-acetyltransferases and sialyl-O-acetyl-esterase activities. CAS1 Domain-Containing Protein 1 (CASD1) is the only human sialyl-O-acetyltransferases (SOAT) described until now. O-acetylated ganglioside species are mainly expressed during embryonic development and in the central nervous system in healthy adults, but are re-expressed during cancer development and are considered as markers of cancers of neuroectodermal origin. However, the specific biological roles of O-acetylated gangliosides in developing and malignant tissues have not been extensively studied, mostly because of the requirement of specific approaches and tools for sample preparation and analysis. In this review, we summarize our current knowledge of ganglioside biosynthesis and expression in normal and pathological conditions, of ganglioside O-acetylation analysis and expression in cancers, and of the possible use of O-acetylated gangliosides as targets for cancer immunotherapy.


2020 ◽  
Vol 21 (11) ◽  
pp. 4170 ◽  
Author(s):  
Emmanuel Ampofo ◽  
Lisa Nalbach ◽  
Michael D. Menger ◽  
Matthias W. Laschke

Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yin ◽  
Katherine L. Valin ◽  
Michael L. Dixon ◽  
Jianmei W. Leavenworth

Macrophages are major cell types of the immune system, and they comprise both tissue-resident populations and circulating monocyte-derived subsets. Here, we discuss microglia, the resident macrophage within the central nervous system (CNS), and CNS-infiltrating macrophages. Under steady state, microglia play important roles in the regulation of CNS homeostasis through the removal of damaged or unnecessary neurons and synapses. In the face of inflammatory or pathological insults, microglia and CNS-infiltrating macrophages not only constitute the first line of defense against pathogens by regulating components of innate immunity, but they also regulate the adaptive arms of immune responses. Dysregulation of these responses contributes to many CNS disorders. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia and macrophages during CNS autoimmunity—multiple sclerosis and cancer—malignant glioma. We emphasize how the crosstalk between natural killer (NK) cells or glioma cells or glioma stem cells and CNS macrophages impacts on the pathological processes. Given the essential role of CNS microglia and macrophages in the regulation of all types of CNS disorders, agents targeting these subsets are currently applied in preclinical and clinical trials. We believe that a better understanding of the biology of these macrophage subsets offers new exciting paths for therapeutic intervention.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Bollaerts ◽  
Jessie Van houcke ◽  
Lien Andries ◽  
Lies De Groef ◽  
Lieve Moons

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document