scholarly journals Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses

2021 ◽  
Vol 12 ◽  
Author(s):  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Pinnapat Pinsorn ◽  
Akira Oikawa ◽  
Ryosuke Sasaki ◽  
...  

Durian is an economically important fruit of Southeast Asia. There is, however, a lack of in-depth information on the alteration of its metabolic networks during ripening. Here, we annotated 94 ripening-associated metabolites from the pulp of durian cv. Monthong fruit at unripe and ripe stages, using capillary electrophoresis- and gas chromatography- time-of-flight mass spectrometry, specifically focusing on taste-related metabolites. During ripening, sucrose content increased. Change in raffinose-family oligosaccharides are reported herein for the first time. The malate and succinate contents increased, while those of citrate, an abundant organic acid, were unchanged. Notably, most amino acids increased, including isoleucine, leucine, and valine, whereas aspartate decreased, and glutamate was unchanged. Furthermore, transcriptomic analysis was performed to analyze the dynamic changes in sugar metabolism, glycolysis, TCA cycle, and amino acid pathways to identify key candidate genes. Taken together, our results elucidate the fundamental taste-related metabolism of durian, which can be exploited to develop durian metabolic and genetic markers in the future.

2021 ◽  
Author(s):  
Supaart Sirikantaramas ◽  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Pinnapat Pinsorn ◽  
Akira Oikawa ◽  
...  

Abstract Durian is an economically important fruit of Southeast Asia. There is, however, a lack of in-depth information on the alteration of metabolic networks during its ripening. Here, we annotated 94 ripening-associated metabolites from the pulp of durian cv. Monthong fruit at unripe and ripe stages, using capillary electrophoresis- and gas chromatography- time-of-flight mass spectrometry, specifically focused on flavor-related metabolites. During ripening, sucrose content was found to be increased. Change in raffinose-family sugars is reported herein for the first time. The contents of malate and succinate increased, while those of citrate, an abundant organic acid, were unchanged. Notably, most amino acids increased, including isoleucine, leucine, and valine, whereas aspartate decreased, and glutamate was unchanged. Furthermore, transcriptome analysis was performed to support the dynamic changes in several flavor-related pathways, and for the identification of key candidate genes. Taken together, our results could be exploited for developing durian metabolic/genetic markers in the future.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 444
Author(s):  
Igor Florez-Sarasa ◽  
Elina Welchen ◽  
Sofia Racca ◽  
Daniel H. Gonzalez ◽  
José G. Vallarino ◽  
...  

Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Manu Shree ◽  
Shyam K. Masakapalli

The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C5] xylose or 40% [13C6] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Elin Näsström ◽  
Nga Tran Vu Thieu ◽  
Sabina Dongol ◽  
Abhilasha Karkey ◽  
Phat Voong Vinh ◽  
...  

The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li-Xing Nie ◽  
Jing Dong ◽  
Lie-Yan Huang ◽  
Xiu-Yu Qian ◽  
Chao-Jie Lian ◽  
...  

The dried root of Isatis tinctoria L. (Brassicaceae) is one of the most popular traditional Chinese medicines with well-recognized prevention and treatment effects against viral infections. Above 300 components have been isolated from this herb, but their spatial distribution in the root tissue remains unknown. In recent years, mass spectrometry imaging (MSI) has become a booming technology for capturing the spatial accumulation and localization of molecules in fresh plants, animal, or human tissues. However, few studies were conducted on the dried herbal materials due to the obstacles in cryosectioning. In this study, distribution of phytochemicals in the dried root of Isatis tinctoria was revealed by microscopic mass spectrometry imaging, with application of atmospheric pressure–matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap–time-of-flight mass spectrometry (IT-TOF/MS). After optimization of the slice preparation and matrix application, 118 ions were identified without extraction and isolation, and the locations of some metabolites in the dried root of Isatis tinctoria were comprehensively visualized for the first time. Combining with partial least square (PLS) regression, samples collected from four habitats were differentiated unambiguously based on their mass spectrometry imaging.


Author(s):  
Lahouaria Medjdoub ◽  
Belbachir Mohammed

<p>Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP) with allylamine in order to give hexa(allylamino)cyclotriphosphazene (HACTP)  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H<sup>+</sup>. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H<sup>+</sup> is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H<sup>+</sup> to 5% by weight is confirmed by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, <sup>31</sup>P-NMR (Nuclear magnetic resonance) and FTIR (Fourier Transform Infrared spectroscopy). MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry) is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery) and TGA (Thermogravimetric Analysis) show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 28<sup>th</sup> September 2015; Revised: 5<sup>th</sup> December 2015; Accepted: 4<sup>th</sup> January 2016</em></p><p><strong>How to Cite</strong>: Medjdoub, L., Mohammed, B. (2016). New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 151-160 (doi:10.9767/bcrec.11.2.541.151-160)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.541.151-160</p>


2020 ◽  
Author(s):  
Chi Zhang ◽  
Stephen Boppart

Abstract The mitochondrion is one of the key organelles for maintaining cellular homeostasis. External environmental stimuli and internal regulatory processes alter the metabolism and functions of mitochondria. To understand these activities of mitochondria, it is critical to probe the key metabolic molecules inside these organelles. In this study, we used label-free chemical imaging modalities including coherent anti-Stokes Raman scattering and multiphoton-excited autofluorescence to study the mitochondrial activities in living cancer cells. We found that hypothermia exposure tends to induce fatty-acid (FA) accumulation in some mitochondria of MIAPaCa-2 cells. Autofluorescence images show that the FA-accumulated mitochondria also have abnormal NADH and FAD metabolism, likely induced by the dysfunction of the electron transport chain. We also found that when the cells were re-warmed to physiological temperature after a period of hypothermia, the FA-accumulated mitochondria changed their structural features, likely caused by the mitophagy process. To the best of our knowledge, this is the first time that FA accumulation in mitochondria was observed in live cells. Our research also demonstrates that multimodal label-free chemical imaging is an attractive tool to discover abnormal functions of mitochondria at the single-organelle level and can be used to quantify the dynamic changes of this organelle under perturbative conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Wang ◽  
Shun Yao ◽  
Xiu-Xiu Zhang ◽  
Hang Song

2,2-Diphenyl-1-picrylhydrazyl-ultra-high performance liquid chromatography-Q-time-of-flight mass spectrometry (DPPH-UPLC-Q-TOF/MS), as a rapid and efficient means, now was used for the first time to screen antioxidants fromSelaginella doederleinii. The nine biflavone compounds were screened as potential antioxidants. The biflavones were structurally identified and divided into the three types, that is, amentoflavone-type, robustaflavone-type, and hinokiflavone-type biflavonoids. Among the compounds bilobetin (3) and putraflavone (8) were found fromSelaginella doederleiniifor the first time and others including amentoflavone (1), robustaflavone (2), 4′-methoxy robustaflavone (4), podocarpusflavone A (5), hinokiflavone (6), ginkgetin (7), and heveaflavone (9) were identified previously in the plant. Moreover, nine biflavones possessed a good antioxidant activity via their DPPH free radical scavenging. It demonstrates that DPPH-UPLC-Q-TOF/MS exhibits strong capacity in separation and identification for small molecule. The method is suitable for rapid screening of antioxidants without the need for complicated systems and additional instruments.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1503
Author(s):  
Maya Matsunami ◽  
Kyoko Toyofuku ◽  
Natsumi Kimura ◽  
Atsushi Ogawa

To breed osmotic stress-tolerant rice, the mechanisms involved in maintaining root growth under osmotic stress is important to elucidate. In this study, two rice (Oryza sativa L.) cultivars, IR 58 (stress-tolerant cultivar) and Basilanon (stress-sensitive cultivar), were used. After 1, 3, and 7 days of −0.42 MPa osmotic stress treatment induced by polyethylene glycol (PEG) 6000, root metabolomes were analyzed, yielding 276 detected compounds. Among 276 metabolites, 102 metabolites increased with the duration of the stress treatment in IR 58 roots, and only nine metabolites decreased. In contrast, 51 metabolites increased, and 45 metabolites decreased in Basilanon roots. Principal component analysis (PCA) scores clearly indicated differences between the cultivars and the treatments. Pathway analysis showed that the metabolites exhibiting stress-induced increases in IR 58 were those involved in sugar metabolism (such as sucrose 6’-phosphate, glucose 1-phosphate), polyamine and phenylpropanoid metabolisms (such as spermine, spermidine, gamma-aminobutyric acid (GABA)), and glutathione metabolism (such as glutathione, cysteine, cadaverine). IR 58 roots showed an increase in the most proteinogenic amino acids such as proline, serine, glutamine and asparagine. It was also maintained or increased the tricarboxylic acid (TCA) cycle intermediates (citric acid, cis-Aconitic acid, isocitric acid, fumaric acid, malic acid) under osmotic stress compared with that under control. Therefore, IR 58 actively synthesized various metabolites, and the increase in these metabolites contributed to the maintenance of important biological functions such as energy production and antioxidant defense to promote root development under osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document