scholarly journals Comparative Physiological and Proteomic Analyses Reveal the Mechanisms of Brassinolide-Mediated Tolerance to Calcium Nitrate Stress in Tomato

2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Zhang ◽  
Haoting Chen ◽  
Shuo Li ◽  
Yang Li ◽  
Mukesh Kumar Kanwar ◽  
...  

Secondary salinization caused by the overaccumulation of calcium nitrate [Ca(NO3)2] in soils due to excessive fertilization has become one of the major handicaps of protected vegetable production. Brassinolide, a bioactive plant steroid hormone, plays an important role in improving abiotic stress tolerance in plants. However, whether and how brassinolide (BR) can alleviate Ca(NO3)2 stress remains elusive. Here, we investigated the effects of exogenous BR on hydroponically grown tomato (Solanum lycopersicum L.) plants under Ca(NO3)2 stress through proteomics combined with physiological studies. Proteomics analysis revealed that Ca(NO3)2 stress affected the accumulation of proteins involved in photosynthesis, stress responses, and antioxidant defense, however, exogenous BR increased the accumulation of proteins involved in chlorophyll metabolism and altered the osmotic stress responses in tomatoes under Ca(NO3)2 stress. Further physiological studies supported the results of proteomics and showed that the exogenous BR-induced alleviation of Ca(NO3)2 stress was associated with the improvement of photosynthetic efficiency, levels of soluble sugars and proteins, chlorophyll contents, and antioxidant enzyme activities, leading to the reduction in the levels of reactive oxygen species and membrane lipid peroxidation, and promotion of the recovery of photosynthetic performance, energy metabolism, and plant growth under Ca(NO3)2 stress. These results show the importance of applying BR in protected agriculture as a means for the effective management of secondary salinization.

HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1088-1092 ◽  
Author(s):  
Zhen Shu ◽  
Yimin Shi ◽  
Hongmei Qian ◽  
Yiwei Tao ◽  
Dongqin Tang

Two cultivars of Freesia hybrida, ‘Shangnong Jinhuanghou’ and ‘Shangnong Hongtaige’, were used to study the respiration rate and physiological responses during flower development and senescence. Phenotypically, the vase life of ‘Shangnong Hongtaige’ was significantly shorter than that of ‘Shangnong Jinhuanghou’. At the whole flower level, both cultivars displayed similar change patterns on respiration rate. However, the change patterns in tepals, stamens, and pistils showed some differences in the two cultivars. A respiratory climacteric existed in most organs in both cultivars except for the stamen of ‘Shangnong Jinhuanghou’. During flower development and senescence, the levels of soluble proteins and soluble sugars were very high at early stages, followed by a dramatic decrease, and the lowest levels occurred in wilted tepals in both cultivars. Superoxide dismutase (SOD) activities increased slightly at early developmental stages followed by a constant decrease in two cultivars, and SOD activities in ‘Shangnong Jinhuanghou’ were significantly higher than those in ‘Shangnong Hongtaige’. Peroxidase activities showed a constant increase before tepals started wilting followed by a decrease in wilted tepals in both cultivars. In both cultivars, electrolytic leakage and malondialdehyde (MDA) content in tepals increased with the progression of development and senescence. MDA content in ‘Shangnong Hongtaige’ was much higher than that in ‘Shangnong Jinhuanghou’. These results indicated that the respiratory climacteric, the decrease of antioxidant enzyme activities, the peroxidation of membrane lipid, and the loss of soluble compounds could be considered as indicators of flower senescence in Freesia.


2021 ◽  
Vol 22 (3) ◽  
pp. 1434
Author(s):  
Pieter Wytynck ◽  
Jeroen Lambin ◽  
Simin Chen ◽  
Sinem Demirel Asci ◽  
Isabel Verbeke ◽  
...  

Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Aditya Banerjee ◽  
Aryadeep Roychoudhury

WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of theWRKYgenes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.


Author(s):  
Dinesh Kumar ◽  
Mohamad Al Hassan ◽  
Oscar Vicente ◽  
Veena Agrawal ◽  
Monica Boscaiu

Elucidating the mechanisms of abiotic stress tolerance in different species will help to develop more resistant plant varieties, contributing to improve agricultural production in a climate change scenario. Basic responses to salt stress, dependent on osmolyte accumulation and activation of antioxidant systems, have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one-month treatments with quite high NaCl concentrations, up to 800 mM, indicating the the species is relatively resistant to salt stress, in addition to drought. Levels of proline, glycine betaine and soluble sugars increased only slightly in the presence of salt; however, soluble sugar absolute contents were much higher than those of the other osmolytes, suggesting a functional role of these compounds in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic and non-enzymatic, are generally activated in response to salt stress; in oleander, they do not seem to include total phenolics or flavonoids, antioxidant compounds which did not accumulate significantly in salt-trated plants


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5337
Author(s):  
Cheng Huang ◽  
Yulong Tian ◽  
Bingbing Zhang ◽  
Muhammad Jawad Hassan ◽  
Zhou Li ◽  
...  

Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood in plants, especially in grass species. The aim of this study was to investigate whether the CTS could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were pretreated exogenously with or without CTS (0.1 g L−1) before being exposed to normal (23/18 °C) or high-temperature (38/33 °C) conditions for 15 days. Heat stress induced detrimental effects, including declines in leaf relative water content and photochemical efficiency, but significantly increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism, and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence and enhancing photosynthetic performance under heat stress. In addition, the foliar application of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of CTS-regulated thermotolerance associated with other metabolic pathways still need to be further studied in grass species.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Naveed Mushtaq ◽  
Yong Wang ◽  
Junmiao Fan ◽  
Yi Li ◽  
Jing Ding

Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress.


2021 ◽  
Author(s):  
Jun-E Guo

Abstract Histone deacetylation, one of vital modifying factors of post-translation modifications, which is catalyzed by histone deacetylase. The genes of histone deacetylase(HDACs) play critical roles in various stress responses. However, detailed functions for most SlHDAC members in tomato still unknown. In this work, we found that a histone deacetylase, SlHDA3, involved in response to NaCl and drought abiotic stresses. The expression of SlHDA3 was also induced significantly by NaCl, drought stress and endogenous hormone treatments. Silencing of SlHDA3 in tomato, the RNAi transgenic plants presented depressed tolerance to drought and salt stresses compared with WT tomato. The results of sensitivity analysis indicated that the length of hypocotyl and roots in RNAi plants were more inhibited by ABA and salt stress than that of WT at post-germination stage. Worse growth status were exhibited in SlHDA3 transgenic plants under salt and drought stress as are evaluated by a series of physiological parameters related to stress responses, such as decreased RWC, survival rate, ABA content, chlorophyll content and CAT activity, and increased MDA content and proline content. Besides, the expressions analysis of transgenic plants showed that the transcripts of genes which associated with responses to abiotic stress were down-regulated under salt-stressed conditions. To sum up, SlHDA3 acts as a stress-responsive gene, plays a role in the positive regulation of abiotic stress tolerance, and may be one of the new members in the engineering breeding of salt- and drought-tolerant tomato.


2020 ◽  
Vol 61 (8) ◽  
pp. 1399-1407 ◽  
Author(s):  
Mostafa Abdelrahman ◽  
Takayoshi Ishii ◽  
Magdi El-Sayed ◽  
Lam-Son Phan Tran

Abstract Temperature is an essential physical factor that affects the plant life cycle. Almost all plant species have evolved a robust signal transduction system that enables them to sense changes in the surrounding temperature, relay this message and accordingly adjust their metabolism and cellular functions to avoid heat stress-related damage. Wheat (Triticum aestivum), being a cool-season crop, is very sensitive to heat stress. Any increase in the ambient temperature, especially at the reproductive and grain-filling stages, can cause a drastic loss in wheat yield. Heat stress causes lipid peroxidation due to oxidative stress, resulting in the damage of thylakoid membranes and the disruption of their function, which ultimately decreases photosynthesis and crop yield. The cell membrane/plasma membrane plays prominent roles as an interface system that perceives and translates the changes in environmental signals into intracellular responses. Thus, membrane lipid composition is a critical factor in heat stress tolerance or susceptibility in wheat. In this review, we elucidate the possible involvement of calcium influx as an early heat stress-responsive mechanism in wheat plants. In addition, the physiological implications underlying the changes in lipid metabolism under high-temperature stress in wheat and other plant species will be discussed. In-depth knowledge about wheat lipid reprograming can help develop heat-tolerant wheat varieties and provide approaches to solve the impact of global climate change.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 626 ◽  
Author(s):  
Carmen Tatiana Kalinowski ◽  
Laurence Larroquet ◽  
Vincent Véron ◽  
Lidia Robaina ◽  
María Soledad Izquierdo ◽  
...  

A 13-week feeding trial was carried out with juvenile rainbow trout to test two diets: a control diet without astaxanthin (AX) supplementation (CTRL diet), and a diet supplemented with 100 mg/kg of synthetic AX (ASTA diet). During the last week of the feeding trial, fish were exposed to episodic hyperoxia challenge for 8 consecutive hours per day. Episodic hyperoxia induced physiological stress responses characterized by a significant increase in plasma cortisol and hepatic glycogen and a decrease in plasma glucose levels. The decrease of plasma glucose and the increase of hepatic glycogen content due to episodic hyperoxia were emphasized with the ASTA diet. Hyperoxia led to an increase in thiobarbituric acid-reactive substances in the muscle, diminished by dietary AX supplementation in both liver and muscle. Muscle and liver AX were increased and decreased respectively after 7-day episodic hyperoxia, leading to an increase in flesh redness. This augment of muscle AX could not be attributed to AX mobilization, since plasma AX was not affected by hyperoxia. Moreover, hyperoxia decreased most of antioxidant enzyme activities in liver, whereas dietary AX supplementation specifically increased glutathione reductase activity. A higher mRNA level of hepatic glutathione reductase, thioredoxin reductase, and glutamate-cysteine ligase in trout fed the ASTA diet suggests the role of AX in glutathione and thioredoxin recycling and in de novo glutathione synthesis. Indeed, dietary AX supplementation improved the ratio between reduced and oxidized glutathione (GSH/GSSG) in liver. In addition, the ASTA diet up-regulated glucokinase and glucose-6-phosphate dehydrogenase mRNA level in the liver, signaling that dietary AX supplementation may also stimulate the oxidative phase of the pentose phosphate pathway that produces NADPH, which provides reducing power that counteracts oxidative stress. The present results provide a broader understanding of the mechanisms by which dietary AX is involved in the reduction of oxidative status.


Author(s):  
Juan de Dios Barajas-Lopez ◽  
Arjun Tiwari ◽  
Xavier Zarza ◽  
Molly W Shaw ◽  
Jesús Pascual ◽  
...  

  Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


Sign in / Sign up

Export Citation Format

Share Document