scholarly journals Antibacterial Potential by Rupture Membrane and Antioxidant Capacity of Purified Phenolic Fractions of Persea americana Leaf Extract

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 508
Author(s):  
Laura María Solís-Salas ◽  
Crystel Aleyvick Sierra-Rivera ◽  
Luis Enrique Cobos-Puc ◽  
Juan Alberto Ascacio-Valdés ◽  
Sonia Yesenia Silva-Belmares

The present research focused on evaluating the antibacterial effect and the mechanism of action of partially purified fractions of an extract of Persea americana. Furthermore, both its antioxidant capacity and composition were evaluated. The extract was fractionated by vacuum liquid chromatography. The antimicrobial effect against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 11229), Pseudomonas aeruginosa (ATCC 15442), and Salmonella choleraesuis (ATCC 1070) was analyzed by microdilution and the mechanism of action by the Sytox green method. The antioxidant capacity was determined by DPPH, FRAP, and ABTS techniques and the composition by Rp-HPLC-MS. All fractions showed a concentration-dependent antibacterial effect. Fractions F3, F4, and F5 (1000 µg/mL) showed a better antibacterial effect than the extract against the bacteria mentioned. The F3 fraction showed inhibition of 95.43 ± 3.04% on S. aureus, F4 showed 93.30 ± 0.52% on E. coli, and F5 showed 88.63 ± 1.15% on S. choleraesuis and 86.46 ± 3.20% on P. aeruginosa. The most susceptible strain to the treatment with the extract was S. aureus. Therefore, in this strain, the bacterial membrane damage induced by the extract and fractions was evidenced by light fluorescence microscopy. Furthermore, the extract had better antioxidant action than each fraction. Finally, sinensitin was detected in F3 and cinnamoyl glucose, caffeoyl tartaric acid, and cyanidin 3-O-(6′′-malonyl-3′′-glucosyl-glucoside) were detected in F4; esculin and kaempferide, detected in F5, could be associated with the antibacterial and antioxidant effect.

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1827 ◽  
Author(s):  
Dániel Nemes ◽  
Renátó Kovács ◽  
Fruzsina Nagy ◽  
Mirtill Mező ◽  
Nikolett Poczok ◽  
...  

Nowadays, the safety of parabens as pharmaceutical preservatives is debated. Recent studies investigated their interference with the oestrogen receptors, nevertheless their carcinogenic activity was also proved. That was the reason why the re-evaluation of the biocompatibility and antimicrobial activity of parabens is required using modern investigation methods. We aimed to test the cytotoxic, antifungal and antibacterial effect of parabens on Caco-2 cells, C. albicans, C. parapsilosis, C. glabrata, E. coli, P. aeruginosa and S. aureus. Two complex systems (glycerol—Polysorbate 20; ethanol—Capryol PGMC™) were formulated to study—with the MTT-assay and microdilution method, respectively—how other excipients may modify the biocompatibility and antimicrobial effect of parabens. In the case of cytotoxicity, the toxicity of these two systems was highly influenced by co-solvents and surfactants. The fungi and bacteria had significantly different resistance in the formulations and in some cases the excipients could highly modify the effectiveness of parabens both in an agonistic and in a counteractive way. These results indicate that with appropriate selection, non-preservative excipients can contribute to the antimicrobial safety of the products, thus they may decrease the required preservative concentration.


2008 ◽  
Vol 74 (7) ◽  
pp. 2171-2178 ◽  
Author(s):  
Woo Kyung Jung ◽  
Hye Cheong Koo ◽  
Ki Woo Kim ◽  
Sook Shin ◽  
So Hyun Kim ◽  
...  

ABSTRACT The antibacterial effect and mechanism of action of a silver ion solution that was electrically generated were investigated for Staphylococcus aureus and Escherichia coli by analyzing the growth, morphology, and ultrastructure of the bacterial cells following treatment with the silver ion solution. Bacteria were exposed to the silver ion solution for various lengths of time, and the antibacterial effect of the solution was tested using the conventional plate count method and flow cytometric (FC) analysis. Reductions of more than 5 log10 CFU/ml of both S. aureus and E. coli bacteria were confirmed after 90 min of treatment with the silver ion solution. Significant reduction of S. aureus and E. coli cells was also observed by FC analysis; however, the reduction rate determined by FC analysis was less than that determined by the conventional plate count method. These differences may be attributed to the presence of bacteria in an active but nonculturable (ABNC) state after treatment with the silver ion solution. Transmission electron microscopy showed considerable changes in the bacterial cell membranes upon silver ion treatment, which might be the cause or consequence of cell death. In conclusion, the results of the present study suggest that silver ions may cause S. aureus and E. coli bacteria to reach an ABNC state and eventually die.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Susanne Raschle ◽  
Claudio Zweifel ◽  
Katrin Zurfluh ◽  
Roger Stephan

To assess the antimicrobial effect of a commercial UV-C system, knives inoculated with Escherichia coli and Staphylococcus aureus as well as naturally contaminated and collected from the wet and clean area of a slaughterhouse knives were examined. For inoculated knives, UVC treatment for 30 s reduced mean E. coli counts by 5.1 log CFU cm-2 and mean S. aureus counts by 4.5 log CFU cm-2. The presence of blood lowered mean reductions to 3.4 log CFU cm-2 for E. coli and to 2.5 log CFU cm-2 for S. aureus. The presence of fat had a greater negative impact on the efficacy of the UV-C treatment resulting in mean reductions <1.8 log CFU cm-2. For naturally contaminated knives from a slaughterhouse, total viable counts (TVC) before UV-C treatment varied considerably (wet area: 2.0-6.0 log CFU cm-2, clean area: 1.0–3.0 log CFU cm-2). UV-C treatment for 30s reduced mean TVC by 0.8 log CFU cm-2 (wet area) and 0.6 log CFU cm-2 (clean area), but the effect varied greatly between individual knives. Thus, under commercial conditions, the antibacterial effect of UV-C for the decontamination of knives is affected by the presence of additional contaminations like blood or fat. The adequate cleaning of the knives prior to UV-C decontamination is therefore of central importance.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Serena Reggi ◽  
Carlotta Giromini ◽  
Matteo Dell’Anno ◽  
Antonella Baldi ◽  
Raffaella Rebucci ◽  
...  

Quebracho (Qu) and chestnut (Ch) are natural sources of tannins and they are currently used in animal nutrition as feed ingredients. However, to date the bio-accessibility, antimicrobial, antioxidant, and intestinal epithelial cell stimulatory doses of Qu and Ch have not been determined. Our study investigates the antioxidant and E. coli F4+ and F18+ growth inhibitory activity of Qu, Ch, and their combinations after solubilization in water (to evaluate the already bio-accessible molecules) and after simulated gastro-intestinal digestion in vitro. The effect of an in vitro digested Ch and Qu combination was also tested on intestinal epithelial IPEC-J2 cells experimentally stressed with hydrogen peroxide (H2O2) and Dextran Sodium Sulfate (DSS). The results showed that undigested Qu and Ch alone, and in combination, exerted a valuable antioxidant capacity and E. coli F4+ and F18+ growth inhibitory activity. The concentration of 1200 µg/mL exhibited the highest E. coli growth inhibitory activity for all the samples tested. In addition, after in vitro digestion, Qu and Qu50%–Ch50% maintained E. coli growth inhibitory activity and a modest antioxidant capacity. Three hours pre-treatment with in vitro digested Qu50%–Ch50% counteracted the H2O2 and DSS experimentally-induced stress in the intestinal IPEC-J2 cells. Ch and Qu tannin extracts, particularly when combined, may exert E. coli F4+ and F18+ growth inhibitory activity and valuable antioxidant and cell viability modulation activities.


2017 ◽  
Vol 80 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Esmeralda Rangel-Vargas ◽  
Carlos A. Gómez-Aldapa ◽  
Reyna N. Falfan-Cortes ◽  
María L. Rodríguez-Marín ◽  
Angélica Godínez-Oviedo ◽  
...  

ABSTRACT Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle (Hibiscus sabdariffa) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus, E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.


Author(s):  
Perla Y. Villa-Silva ◽  
◽  
Anna Iliná ◽  
Juan A. Ascacio-Valdés ◽  
Sandra C. Esparza-González ◽  
...  

Tagetes lucida Cav. (Asteraceae=Compositae) is used for treating stomach infections. The study focused on evaluating the composition and antimicrobial effect of an extract of T. lucida Cav. The plant extracted with ethanol at 10% w/v, and the extract composition analyzed by Rp-HPLC-MS. The antibacterial effect was evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella choleraesuis using disk diffusion, microdilution and bioautography methods. The sytox and comet assays were used to evaluate the mechanism of action. In this way, nine phenolic compounds were detected in the extract of T. lucida. The extract exhibited activity only on S. aureus (MIC of 4.000 mg/ml). The bioautography revealed that the phenolic compounds could act synergistically. The sytox and comet tests showed an antibacterial action of the extract on the bacterial membrane and DNA of this bacterial strain.


2014 ◽  
Vol 10 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Samaneh Mazdeh ◽  
Hossein Motamedi ◽  
Azim Khiavi ◽  
Mohammad Mehrabi

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2021 ◽  
Vol 11 (9) ◽  
pp. 4315
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Cristina Mihaela Luntraru ◽  
Alexandru Suciu

Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.


Sign in / Sign up

Export Citation Format

Share Document