scholarly journals Salt Stress-Induced Structural Changes Are Mitigated in Transgenic Tomato Plants Over-Expressing Superoxide Dismutase

Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 297 ◽  
Author(s):  
Liliya R. Bogoutdinova ◽  
Elena M. Lazareva ◽  
Inna A. Chaban ◽  
Neonila V. Kononenko ◽  
Tatyana Dilovarova ◽  
...  

Various abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and Na2SO4 solutions to tomato plants harboring an introduced superoxide dismutase gene. To study the roots of tomato plants cultivar Belyi Naliv (WT) and FeSOD-transgenic line, we examined the distribution of ROS and enzyme-linked immunosorbent detection of α-tubulin. In addition, longitudinal sections of the root apexes were compared. Transmission electronic microscopy of atypical cytoskeleton structures was also performed. The differences in the microtubules cortical network between WT and transgenic plants without salt stress were detected. The differences were found in the cortical network of microtubules between WT and transgenic plants in the absence of salt stress. While an ordered microtubule network was revealed in the root cells of WT tomato, no such degree of ordering was detected in transgenic line cells. The signs of microtubule disorganization in root cells of WT plants were manifested under the NaCl treatment. On the contrary, the cytoskeleton structural organization in the transgenic line cells was more ordered. Similar changes, including the cortical microtubules disorganization, possibly associated with the formation of atypical tubulin polymers as a response to salt stress caused by Na2SO4 treatment, were also observed. Changes in cell size, due to both vacuolization and impaired cell expansion in columella zone and cap initials, were responsible for the root tip tissue modification.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1322
Author(s):  
Josselyn Salinas-Cornejo ◽  
José Madrid-Espinoza ◽  
Isabel Verdugo ◽  
Jorge Pérez-Díaz ◽  
Alex San Martín-Davison ◽  
...  

In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membrane fusion and guarantee cargo delivery to the correct cellular compartments. SNAREs from the Qbc subfamily are the best-characterized plasma membrane SNAREs, where they control exocytosis during cell division and defense response. The Solanum lycopersicum gene SlSNAP33.2 encodes a Qbc-SNARE protein and is induced under salt stress conditions. SlSNAP33.2 localizes on the plasma membrane of root cells of Arabidopsis thaliana. In order to study its role in endocytosis and salt stress response, we overexpressed the SlSNAP33.2 cDNA in a tomato cultivar. Constitutive overexpression promoted endocytosis along with the accumulation of sodium (Na+) in the vacuoles. It also protected the plant from cell damage by decreasing the accumulation of hydrogen peroxide (H2O2) in the cytoplasm of stressed root cells. Subsequently, the higher level of SlSNAP33.2 conferred tolerance to salt stress in tomato plants. The analysis of physiological and biochemical parameters such as relative water content, the efficiency of the photosystem II, performance index, chlorophyll, and MDA contents showed that tomato plants overexpressing SlSNAP33.2 displayed a better performance under salt stress than wild type plants. These results reveal a role for SlSNAP33.2 in the endocytosis pathway involved in plant response to salt stress. This research shows that SlSNAP33.2 can be an effective tool for the genetic improvement of crop plants.


Author(s):  
Yuhui Hong ◽  
Jun Meng ◽  
Xiaoli He ◽  
Yuanyuan Zhang ◽  
Yushi Luan

Tomato is the highest-value fruit/vegetable crop worldwide. However, the quality and yield of tomatoes are severely affected by late blight. MicroRNA482s (miR482s) are involved in plant immune system. In this study, miR482c was transiently and stably overexpressed in tomatoes in transgenic plants to explore its mechanism in tomato resistance against late blight. Tomato in transgenic plants transiently overexpressed miR482c displayed larger lesion area than the control plants upon infection. Furthermore, compared with the WT tomato plants, the transgenic tomato plants stably overexpressing miR482c displayed decreased expression of target genes accompanied by lower POD, SOD, and PAL activity activities and higher MDA content, thereby leading to a decline in the ROS scavenging ability and aggravating the damage of lipid peroxidation product accumulation on the cell membrane, eventually enhancing plant susceptibility. This finding indicates that miR482c may act as a negative regulator in tomato resistance by regulating NBS-LRR expression levels and ROS levels.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoping Liang ◽  
Honghong He ◽  
Guojie Nai ◽  
Lidan Feng ◽  
Yanmei Li ◽  
...  

Abstract Background Low temperature (LT) is one of the main limiting factors that affect growth and development in grape. Increasing soluble sugar and scavenging reactive oxygen species (ROS) play critical roles in grapevine resistance to cold stress. However, the mechanism of β-amylase (BAM) involved in the regulation of sugar levels and antioxidant enzyme activities in response to cold stress is unclear. Results In this study, six BAM genes were identified and clustered into four groups. Multiple sequence alignment and gene structure analysis showed that VvBAM6 lacked the Glu380 residue and contained only an exon. The transcript abundance of VvBAM1 and VvBAM3 significantly increased as temperature decreased. After LT stress, VvBAM1 was highly expressed in the leaves, petioles, stems, and roots of overexpressing tomato lines. The total amylase and BAM activities increased by 6.5- and 6.01-fold in transgenic plants compared with those in wild-type tomato plants (WT) subjected to LT, respectively. The glucose and sucrose contents in transgenic plants were significantly higher than those in WT plants, whereas the starch contents in the former decreased by 1.5-fold compared with those in the latter under LT stress. The analysis of transcriptome sequencing data revealed that 541 genes were upregulated, and 663 genes were downregulated in transgenic plants. One sugar transporter protein gene (SlSTP10), two peroxidase (POD)-related genes (SlPER7 and SlPER5), and one catalase (CAT)-related gene (SlCAT1) were upregulated by 8.6-, 3.6-, 3.0-, and 2.3-fold in transgenic plants after LT stress, respectively. Conclusions Our results suggest that VvBAM1 overexpression promotes ROS scavenging and improves cold tolerance ability by modulating starch hydrolysis to affect soluble sugar levels in tomato plants.


2001 ◽  
Vol 48 (3) ◽  
pp. 687-698 ◽  
Author(s):  
A Malecka ◽  
W Jarmuszkiewicz ◽  
B Tomaszewska

Lead, similar to other heavy metals and abiotic factors, causes many unfavorable changes at the subcellular and molecular levels in plant cells. An increased level of superoxide anion in Pisum sativum root cells treated with 1 mM Pb(NO3)2 evidenced oxidative stress conditions. We found increased activities of enzymatic components of the antioxidative system (catalase and superoxide dismutase) in the cytosol, mitochondrial and peroxisomal fractions isolated from root cells of Pisum sativum grown in modified Hoagland medium in the presence of lead ions (0.5 or 1 mM). Two isoenzyme forms of superoxide dismutase (Cu,Zn-SOD and Mn-SOD) found in different subcellular compartments of pea roots were more active in Pb-treated plants than in control. Increased amount of alternative oxidase accompanied by an increased activity of this enzyme was found in mitochondria isolated from lead-treated roots. These results show that plants storing excessive amounts of lead in roots defend themselves against the harmful oxidative stress caused by this heavy metal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


Sign in / Sign up

Export Citation Format

Share Document