scholarly journals Horizontal Transfer of miR-643 from Cisplatin-Resistant Cells Confers Chemoresistance to Recipient Drug-Sensitive Cells by Targeting APOL6

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1341
Author(s):  
Grace R. Raji ◽  
Aswini Poyyakkara ◽  
Anjali Kunhi Krishnan ◽  
Ashutosh Kumar Maurya ◽  
Udeshna Changmai ◽  
...  

Acquisition of resistance to cisplatin is a major impediment to the success of cisplatin-based combination therapies for cancer. Recent studies indicate that exosomal miRNAs derived from drug-resistant tumour cells can confer resistance properties to recipient cells by a horizontal transfer mechanism. Although the role of horizontal transfer of a few miRNAs has been described, little is known about the concerted action of horizontal transfer of miRNAs in conferring cisplatin resistance. The present study was designed to identify the role of miR-643, which is one of the most significantly increased miRNA in exosomes released from cisplatin-resistant Heptocarcinoma cells, in altering the cisplatin resistance properties of recipient cells. Drug-sensitivity assays involving miR-643 revealed that ectopic expression of miR-643 can desensitise the cells towards cisplatin. Furthermore, we identified APOL6 as a major target of miR-643. Further mechanistic studies showed that miR-643 can modulate APOL6 mRNA and protein levels, leading to a reversal of APOL6-mediated apoptosis. Altogether, our results suggest an APOL6-dependent mechanism for miR-643 mediated cisplatin resistance upon the horizontal transfer across cell types.

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1792 ◽  
Author(s):  
Rada Tazhitdinova ◽  
Alexander V. Timoshenko

Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3468
Author(s):  
Anqi Li ◽  
Xiaotong Su ◽  
Yuan Tian ◽  
Guibing Song ◽  
Linsen Zan ◽  
...  

Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ekaterina Babaeva ◽  
Irina Gradinaru ◽  
Debra A Schwinn ◽  
Anush Oganesian

Activation of α 1 -Adrenergic Receptors (α 1 ARs), members of the G protein-coupled receptor (GPCR) superfamily, in response to stimulation of the sympathetic nervous system by catecholamines plays a major role in regulating cardiovascular (CV) function. Among three α 1 AR subtypes (α 1a ,α 1b ,α 1d ), α 1a ARs predominate in human resistant vessels and in heart. Recently, we discovered that naturally occurring human α 1a AR-G247R (247R) genetic variant, identified in the 3 rd intracellular loop (3iL) of the receptor in highly hypertensive patient, triggers constitutive hyperproliferation in CV cells (cardiomyoblasts, smooth muscle cells (SMC) and fibroblasts), which may lead to myocardial fibrosis and remodeling. In fibroblasts and cardiomyoblasts 247R triggered hyperproliferation is due to constitutive active coupling to Gq-independent βarrestin1/MMP/EGFR/ERK dependent pathway, while in SMC it is Gq- and MMP/EGFR/ERK-dependent. Here we report that α 1a AR-WT (WT) and 247R differentially interact with ubiquitous multi-domain scaffold protein spinophilin (SPL) that binds to 3iL of several GPCRs competing with arrestin thereby prolonging their signaling. The role of SPL in CV regulation is poorly studied. We hypothesized that SPL mediates constitutive signaling of 247R and examined whether SPL directly interacts with α 1a AR-WT or 247R. Our preliminary results reveal a direct interaction of SPL with WT and 247R: the SPL-WT interaction appears to be stronger as determined by co-immunoprecipitation. Different domains of SPL differentially interact with WT or 247R. SPL 1-480aa fragment interacts stronger with WT indicating interaction with 3iL, while SPL 480-817 fragment interacts stronger with 247R. Our preliminary results also demonstrate that 247R expression in all three cell types elevates endogenous SPL protein levels. Importantly, inhibition of SPL expression with specific siRNA reduces 247R-triggered hyperproliferation in SMC and cardiomyoblasts to near normal levels, while SPL knockdown has no effect in WT cells. Thus, we identified SPL as a novel protein involved in interacting and signaling of α 1a AR and its genetic variant in CV cells and that SPL could be considered as a potentially novel target in α 1a AR-mediated cardiovascular disorders.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Rasoul Mirzaei ◽  
Sajad Babakhani ◽  
Parisa Ajorloo ◽  
Razieh Heidari Ahmadi ◽  
Seyed Reza Hosseini-Fard ◽  
...  

AbstractTuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world’s driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40–100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one’s cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection’s fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yufan Wangyang ◽  
Linhong Yi ◽  
Tao Wang ◽  
Yanbo Feng ◽  
Guangwang Liu ◽  
...  

Background Fibroblast-like synoviocytes (FLSs) that line the intimal synovium play a crucial role in the pathogenesis of rheumatoid arthritis (RA). miR-199a-3p is a highly conserved miRNA that has been shown to regulate a variety of growth behaviors in diverse cell types. However, the role of miR-199a-3p in RA-FLS is still unknown. Methods Here, we presented the first experimental evidence showing that miR-199a-3p was a critical regulator of RA-FLS function. Results miR-199a-3p expression was significantly reduced in RA-FLS compared with normal FLS. Ectopic expression of miR-199a-3p significantly inhibited RA-FLS proliferation and induced apoptosis, which was demonstrated by an increase in caspase-3 activity and Bax/Bcl-2 ratio. Our bioinformatics analysis identified Retinoblastoma 1 (RB1) gene to be a direct target of miR-199a-3p. In RA-FLS, miR-199a-3p directly targetted the 3′-UTR of RB1 mRNA and suppressed endogenous RB1 expression, whereas miR-199a-3p-resistant variant of RB1 was not affected. Silencing RB1 decreased cell proliferation and promoted apoptosis in RA-FLS, an effect comparable with miR-199a-3p overexpression. Enforced expression of RB1 partially restored cell proliferation and attenuated apoptosis in miR-199a-3p-overexpressing RA-FLSs. Conclusion In summary, miR-199a-3p is down-regulated in RA-FLS, and miR-199a-3p inhibits proliferation and induces apoptosis in RA-FLS, partially via targetting RB1. The miR-199a-3p/RB1 pathway may represent a new therapeutic target for RA.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Ji-Long Chen ◽  
Andre Limnander ◽  
Paul B. Rothman

Abstract The precise mechanisms by which Abl oncogenes transform hematopoietic cells are unknown. We have examined the role of Pim kinases in v-Abl–mediated transformation. In v-Abl transformants, expression of Pim-1 and Pim-2, but not Pim-3, is dependent on Abl kinase activity. Transformation assays demonstrate that v-Abl cannot efficiently transform bone marrow cells derived from Pim-1−/−/Pim-2−/− mice. Ectopic expression of either Pim-1 or Pim-2 in Pim-1−/−/Pim-2−/− cells restores transformation by v-Abl, strongly suggesting that either Pim-1 or Pim-2 is required for v-Abl–mediated tumorigenesis. Interestingly, the combined deficiency of Pim-1, Pim-2, and Suppressor of Cytokine Signalling (SOCS)-1 resulted in partial restoration of v-Abl transformation efficiency. In addition, Pim kinases are involved in modification of SOCS-1 and in regulating SOCS-1 protein levels in v-Abl–transformed cells. Furthermore, Pim kinases regulate the proapoptotic proteins Bcl-XS and BAD. Pim kinases inhibit the expression of Bcl-XS. Pim deficiency decreases the phosphorylation levels of BAD, whereas ectopic expression of Pim-1 increases the amount of phospho-BAD. This correlates with an increased protection from apoptosis in Abl transformants expressing Pim kinases. Together, these data suggest that Pim kinases play a key role in the v-Abl transformation, possibly via participating in modulation of SOCS-1 and via regulating the apoptotic signaling.


2019 ◽  
Author(s):  
Grace C. Roberts ◽  
Nicola J. Stonehouse ◽  
Mark Harris

AbstractThe role of the chikungunya virus (CHIKV) non-structural protein 3 (nsP3) in the virus lifecycle is poorly understood. The protein comprises 3 domains. The N-terminus is a macro domain, biochemically characterised to bind both RNA and ADP-ribose, and to possess ADP-ribosyl hydrolase activity – an enzymatic activity that removes ADP-ribose from mono-ADP-ribosylated proteins. As ADP-ribosylation is important in the signalling pathway leading to activation of the transcription factor NF-κB, we sought to determine if the macro domain might perturb NF-κB signalling. We first show that CHIKV infection did not induce NF-κB activation, and could not block exogenous activation of the pathway via TNFα, although TNFα treatment did reduce virus titres. Ectopic expression of nsP3 was able to block TNFα-mediated NF-κB activation and this was dependent on the macro domain, as mutations previously shown to disrupt either ADP-ribose binding or hydrolase activity lost the ability to inhibit NF-κB activation. Lastly, we determined the phenotype of the macro domain mutants in the context of virus infection in a range of cell types. Our data are consistent with cell- and species-dependent roles of the macro domain, however, these phenotypes do not correlate with the ability to inhibit NF-κB activation suggesting that the macro domain plays multiple independent roles in the virus lifecycle.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2607-2610 ◽  
Author(s):  
Christofer Diakos ◽  
Gerd Krapf ◽  
Christopher Gerner ◽  
Andrea Inthal ◽  
Christof Lemberger ◽  
...  

Abstract The TEL/AML1 fusion gene results from the most frequent t(12;21)(p13;q22) translocation in childhood acute lymphoblastic leukemia (ALL). Its contribution to transformation is largely unknown, in particular with respect to survival and apoptosis. We therefore silenced TEL/AML1 expression in leukemic REH cells by RNA inhibition, which eventually led to programmed cell death. Microarray and 2D gel electrophoresis data demonstrated a differential regulation of heat-shock proteins (HSPs), among them HSP90, as well as of its client, survivin. Consistent with these findings, ectopic expression of TEL/AML1 in Ba/F3 cells increased protein levels of HSP90 and survivin and conferred resistance to apoptotic stimuli. Our data suggest that TEL/AML1 not only contributes to leukemogenesis by affecting an antiapoptotic network but also seems to be indispensable for maintaining the malignant phenotype. The functional relationship between TEL/AML1, HSP90, and survivin provides the rational for targeted therapy, be it the fusion gene or the latter 2 proteins.


Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


Sign in / Sign up

Export Citation Format

Share Document