scholarly journals [(WR)8WKβA]-Doxorubicin Conjugate: A Delivery System to Overcome Multi-Drug Resistance against Doxorubicin

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 301
Author(s):  
Khalid Zoghebi ◽  
Hamidreza Montazeri Aliabadi ◽  
Rakesh Kumar Tiwari ◽  
Keykavous Parang

Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR]9 containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter. An amphiphilic cyclic peptide containing a lysine (K) residue and alternative W and R was conjugated through a free side chain amino group with Dox via a glutarate linker to afford [(WR)8WKβA]-Dox conjugate. Antiproliferative assays were performed in different cancer cell lines using the conjugate and the corresponding physical mixture of the peptide and Dox to evaluate the effectiveness of synthesized conjugate compared to the parent drug alone. [(WR)8WKβA]-Dox conjugate showed higher antiproliferative activity at 10 µM and 5 µM than Dox alone at 5 μM. The conjugate inhibited the cell viability of ovarian adenocarcinoma (SK-OV-3) by 59% and the triple-negative breast cancer cells MDA-MB-231 and MCF-7 by 71% and 77%, respectively, at a concentration of 5 μM after 72 h of incubation. In contrast, Dox inhibited the proliferation of SK-OV-3, MDA-MB-231, and MCF-7 by 35%, 63%, and 57%, respectively. Furthermore, [(WR)8WKβA]-Dox conjugate (5 µM) inhibited the cell viability of Dox-resistant cells (MES-SA/MX2) by 92%, while the viability of cells incubated with free Dox was only 15% at 5 μM. Confocal microscopy images confirmed the ability of both Dox conjugate and the physical mixture of the peptide with the drug to deliver Dox through an endocytosis-independent pathway, as the uptake was not inhibited in the presence of endocytosis inhibitors. The stability of Dox conjugate was observed at different time intervals using analytical HPLC when the conjugate was incubated with 25% human serum. Half-life (t1/2) for [(WR)8WKβA]-Dox conjugate was (∼6 h), and more than 80% of the conjugate was degraded at 12 h. The release of free Dox was assessed intracellularly using the CCRF-CEM cell line. The experiment demonstrated that approximately 100% of free Dox was released from the conjugate intracellularly within 72 h. These data confirm the ability of the cyclic cell-penetrating peptide containing tryptophan and arginine residues as an efficient tool for delivery of Dox and for overcoming resistance to it.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1427 ◽  
Author(s):  
Naglaa Salem El-Sayed ◽  
Amir Nasrolahi Shirazi ◽  
Muhammad Imran Sajid ◽  
Shang Eun Park ◽  
Keykavous Parang ◽  
...  

Cell-penetrating peptide [WR]5 has been previously shown to be an efficient molecular transporter for various hydrophilic and hydrophobic molecules. The peptide was synthesized using Fmoc/tBu solid-phase chemistry, and one arginine was replaced with one lysine to enable the conjugation with the anticancer drugs. Paclitaxel (PTX) was functionalized with an esterification reaction at the C2′ hydroxyl group of PTX with glutaric anhydride and conjugated with the cyclic peptide [W(WR)4K(βAla)] in DMF to obtain the peptide-drug conjugate PTX1. Furthermore, camptothecin (CPT) was modified at the C(20)-hydroxyl group through the reaction with triphosgene. Then, it was conjugated with two functionalized cyclic peptides through a formyl linker affording two different conjugates, namely CPT1 and CPT2. All the conjugates showed better water solubility as compared to the parent drug. The cytotoxicity assay of the drugs and their conjugates with the peptides were evaluated in the human breast cancer MCF-7 cell line. PTX inhibited cell proliferation by 39% while the PTX-peptide conjugate inhibited the proliferation by ~18% after 72 h incubation. On the other hand, CPT, CPT1, and CPT2 reduced the cell proliferation by 68%, 39%, and 62%, respectively, in the MCF-7 cell lines at 5 µM concentration after 72 h incubation.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Hussain ◽  
M Grootveld ◽  
R Arroo ◽  
K Beresford ◽  
K Ruparelia ◽  
...  

Author(s):  
Aditi Rathee ◽  
Anil Panwar ◽  
Seema Kumari ◽  
Sanjay Chhibber ◽  
Ashok Kumar

Introduction:: Enzymatic degradation of peptidoglycan, a structural cell wall component of Gram-positive bacteria, has attracted considerable attention being a specific target for many known antibiotics. Methods:: Peptidoglycan hydrolases are involved in bacterial lysis through peptidoglycan degradation. β-N-acetylglucosaminidase, a peptidoglycan hydrolase, acts on O-glycosidic bonds formed by N-acetylglucosamine and N-acetyl muramic acid residues of peptidoglycan. Aim of present study was to study the action of β-N-acetylglucosaminidase, on methicillin- resistant Staphylococcus aureus (MRSA) and other Gram-negative bacteria. Results:: We investigated its dynamic behaviour using molecular dynamics simulation and observed that serine and alanine residues are involved in catalytic reaction in addition to aspartic acid, histidine, lysine and arginine residues. When simulated in its bound state, the RMSD values were found lesser than crystal form in the time stamp of 1000 picoseconds revealing its stability. Structure remained stably folded over 1000 picoseconds without undergoing any major change further confirming the stability of complex. Conclusion:: It can be concluded that enzymes belonging to this category can serve as a tool in eradicating Gram-positive pathogens and associated infections.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1490
Author(s):  
Osama M. Elzamzamy ◽  
Brandon E. Johnson ◽  
Wei-Chih Chen ◽  
Gangqing Hu ◽  
Reinhold Penner ◽  
...  

Multiple myeloma (MM) is a currently incurable hematologic cancer. Patients that initially respond to therapeutic intervention eventually relapse with drug resistant disease. Thus, novel treatment strategies are critically needed to improve patient outcomes. Our group has developed a novel cyclic peptide referred to as MTI-101 for the treatment of MM. We previously reported that acquired resistance to HYD-1, the linear form of MTI-101, correlated with the repression of genes involved in store operated Ca2+ entry (SOCE): PLCβ, SERCA, ITPR3, and TRPC1 expression. In this study, we sought to determine the role of TRPC1 heteromers in mediating MTI-101 induced cationic flux. Our data indicate that, consistent with the activation of TRPC heteromers, MTI-101 treatment induced Ca2+ and Na+ influx. However, replacing extracellular Na+ with NMDG did not reduce MTI-101-induced cell death. In contrast, decreasing extracellular Ca2+ reduced both MTI-101-induced Ca2+ influx as well as cell death. The causative role of TRPC heteromers was established by suppressing STIM1, TRPC1, TRPC4, or TRPC5 function both pharmacologically and by siRNA, resulting in a reduction in MTI-101-induced Ca2+ influx. Mechanistically, MTI-101 treatment induces trafficking of TRPC1 to the membrane and co-immunoprecipitation studies indicate that MTI-101 treatment induces a TRPC1-STIM1 complex. Moreover, treatment with calpeptin inhibited MTI-101-induced Ca2+ influx and cell death, indicating a role of calpain in the mechanism of MTI-101-induced cytotoxicity. Finally, components of the SOCE pathway were found to be poor prognostic indicators among MM patients, suggesting that this pathway is attractive for the treatment of MM.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769756 ◽  
Author(s):  
Jia-Teng Zhong ◽  
Jian Yu ◽  
Hai-Jun Wang ◽  
Yu Shi ◽  
Tie-Suo Zhao ◽  
...  

Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway–related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V–fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V–fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.


2020 ◽  
Vol 22 (1) ◽  
pp. 242
Author(s):  
Sara Silva ◽  
Cláudia Alves ◽  
Diana Duarte ◽  
Ana Costa ◽  
Bruno Sarmento ◽  
...  

Drug repurposing and drug combination are two strategies that have been widely used to overcome the traditional development of new anticancer drugs. Several FDA-approved drugs for other indications have been tested and have demonstrated beneficial anticancer effects. In this connection, our research group recently reported that Tacrine, used to treat Alzheimer’s Disease, inhibits the growth of breast cancer MCF-7 cells both alone and in combination with a reference drug. In this view, we have now coupled Tacrine with the model amphipathic cell-penetrating peptide (CPP) MAP, to ascertain whether coupling of the CPP might enhance the drug’s antiproliferative properties. To this end, we synthesized MAP through solid-phase peptide synthesis, coupled it with Tacrine, and made a comparative evaluation of the parent drug, peptide, and the conjugate regarding their permeability across the blood-brain barrier (BBB), ability to inhibit acetylcholinesterase (AChE) in vitro, and antiproliferative activity on cancer cells. Both MAP and its Tacrine conjugate were highly toxic to MCF-7 and SH-SY5Y cells. In turn, BBB-permeability studies were inconclusive, and conjugation to the CPP led to a considerable loss of Tacrine function as an AChE inhibitor. Nonetheless, this work reinforces the potential of repurposing Tacrine for cancer and enhances the antiproliferative activity of this drug through its conjugation to a CPP.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Paul-Samojedny M ◽  
◽  
Liduk E ◽  
Borkowska P ◽  
Kowalczyk M ◽  
...  

Purpose: Glioblastoma Multiforme (GBM) is a heterogenous and highly vascularized brain tumor that avoid apoptosis due to P-glycoprotein (P-gp) mediated multi-drug resistance. Therefore, development of new therapeutic strategies that induce apoptosis, inhibit proliferation, and overcome multi-drug resistance is urgently warranted. We examined the efficacy of combination of Valproic Acid (VPA) and knockdown of AKT3 and PI3KCA genes in human glioblastoma T98G and U87MG cell lines. Material and Methods: T98G and U87MG cells were transfected with AKT3 or PI3KCA siRNAs. Transfection efficiency was assessed using Flow Cytometry (FC) and fluorescence microscopy. The influence of AKT3 and PI3KCA siRNAs in combination with VPA on T98G and U87MG cell viability, proliferation, apoptosis and autophagy was evaluated as well. Alterations in the mRNA expression of apoptosis-related genes (CASP3 and Bid) were analyzed using QRT-PCR. Results: The transfection of T98G and U87MG cells with AKT3 or PI3KCA siRNAs and exposition on VPA led to a significant reduction in cell viability, the accumulation of subG1-phase cells and a reduced fraction of cells in the S and G2/M phases, apoptosis or necrosis induction and induction of autophagy. Conclusions: The siRNA-induced AKT3 and PI3KCA mRNA knockdown in combination with VPA may offer a novel therapeutic strategy to more effective control the growth of human GBM cells. Thus, knockdown of these genes in combination with valproic acid inhibits proliferation, induces apoptosis and autophagy in T98G and U87MG cells, but further studies are necessary to confirm a positive phenomenon for the treatment of GBM.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 280
Author(s):  
Laila Naif Al-Harbi ◽  
Pandurangan Subash-Babu ◽  
Manal Abdulaziz Binobead ◽  
Maha Hussain Alhussain ◽  
Sahar Abdulaziz AlSedairy ◽  
...  

Controlled production of cyclin dependent kinases (CDK) and stabilization of tumor suppressor genes are the most important factors involved in preventing carcinogenesis. The present study aimed to explore the cyclin dependent apoptotic effect of nymphayol on breast cancer MCF-7 cells. In our previous study, we isolated the crystal from a chloroform extract of Nymphaea stellata flower petals and it was confirmed as nymphayol (17-(hexan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-ol) using x-ray diffraction (XRD), Fourier transform infrared (FTIR), and mass spectroscopy (MS) methods. The cytotoxic effect of nymphayol on MCF-7 cells were analyzed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cellular and nuclear damage was determined using propidium iodide (PI) and acridine orange/ethidium bromide (AO/ErBr) staining. Tumor suppressor and apoptosis related mRNA transcript levels were determined using real-time polymerase chain reaction (RT-PCR). Nymphayol potentially inhibits MCF-7 cell viability up to 78%, and the IC50 value was observed as 2.8 µM in 24 h and 1.4 µM in 48 h. Treatment with nymphayol significantly increased reactive oxygen species (ROS) level and the tunnel assay confirmed DNA damage. We found characteristically 76% apoptotic cells and 9% necrotic cells in PI and AO/ErBr staining after 48 h treatment with 2.8 µM of nymphayol. Gene expression analysis confirmed significantly (p ≤ 0.001) increased mRNA levels of cyclin dependent kinase inhibitor 2A (Cdkn2a), retinoblastoma protein 2 (pRb2), p53, nuclear factor erythroid 2-factor 2 (Nrf2), caspase-3, and decreased B-cell lymphoma 2 (Bcl-2), murine double minute 2 (mdm2), and proliferating cell nuclear antigen (PCNA) expression after 48 h. Nymphayol effectively inhibited breast cancer cell viability, and is associated with early expression of Cdkn2a, pRb2, and activation of p53 and caspases.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Seyed Kazem Sabbagh ◽  
Ehsan Ghodrati ◽  
Alireza Hajibeiki ◽  
Mahta Mazaheri ◽  
Mohammad Reza Sarafraz Ardakani ◽  
...  

Background: To increase the therapeutic effect of drugs to combat diseases, combination therapy with current chemical drugs and new medicines derived from medicinal plants is necessary. Objectives: The present work aimed to investigate the effect of hydroalcoholic extract of two medicinal plants, Ephedra major and Momordi cacharantia (Carla), and resveratrol drug on cell viability and expression levels of caspase-3 gene in MCF-7 cell line. Methods: In this experimental study, the hydroalcoholic extraction of tested plants was done with a Soxhlet extractor. The MTT assay and real-time PCR were used to determine cell toxicity and caspase-3 gene expression levels, respectively. Results: The highest and lowest cytotoxic effects of plant extracts and resveratrol were observed at concentrations of 500 and 150 µg/mL, respectively. The highest level of the caspase-3 gene expression was observed after 72 h of incubation by different concentrations of plant extracts and resveratrol. Conclusions: It can be concluded that both plant extracts could influence cell viability in MCF-7 cells via the increase of cell toxicity and expression of caspase3 gene. Thus, these species could be used in the pharmaceutical industry.


Sign in / Sign up

Export Citation Format

Share Document