scholarly journals Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral and Phytochemical Content of Microgreens

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1333
Author(s):  
Marios C. Kyriacou ◽  
Christophe El-Nakhel ◽  
Georgios A. Soteriou ◽  
Giulia Graziani ◽  
Angelos Kyratzis ◽  
...  

While imparting gastronomic novelty and sensory delight, microgreens also constitute rudimentary leafy greens packed with nutrients and phytochemicals. As such, they comprise an upcoming class of functional foods. However, apart from bioactive secondary metabolites, microgreens also accumulate antinutritive agents such as nitrate, especially under conducive protected cultivation conditions. The current work examined nutrient deprivation before harvest (DBH), applied by replacing nutrient solution with osmotic water for six and twelve days, as a strategy for reducing microgreen nitrate levels in different species (lettuce, mustard, and rocket). The three species were sown on a peat-based substrate, cultivated in a controlled climate chamber, and harvested 18 days after sowing, when the first two true leaves emerged. DBH impact on major constituents of the secondary metabolome, mineral content, colorimetric, and yield traits was appraised. Nitrate and mineral content were determined through ion chromatography, phenolic composition through UHPLC-Q-Orbitrap HRMS, and carotenoid composition through HPLC-DAD. Nutrient deprivation was effective in reducing nitrate content; however, effective treatment duration differed between species and decline was more precipitous in nitrate hyperaccumulating species such as rocket. Quercetin and kaempferol glycosides were the flavonol glycosides most abundant in brassicaceous microgreens, whereas lettuce microgreens were steeped in caffeoyl quinic acid. DBH interacted with species as it increased the total phenolic content of lettuce, decreased that of rocket, but did not affect mustard. Further research to link changes in phenolic composition to the sensory and in vivo bioactive profile of microgreens is warranted. Notably, brief (≤6 days) DBH can be applied across species with moderate or no impact on the phenolic, carotenoid, and mineral composition of microgreens. Brief DBH applications also have limited impact on microgreens’ yield and colorimetric traits hence on the commercial value of the product. They can therefore be applied for reducing microgreen nitrate levels without significantly impacting key secondary metabolic constituents and their potential bioactive role.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Javier Marhuenda ◽  
María Dolores Alemán ◽  
Amadeo Gironés-Vilaplana ◽  
Alfonso Pérez ◽  
Gabriel Caravaca ◽  
...  

Polyphenols from berries have proved healthy effects after“in vitro”and“in vivo”studies, such as preventing tumor growing and neurodegenerative and cardiovascular diseases. We compared four different kinds of berries—strawberry, raspberry, blackberry, and blueberry—with the aim to distinguish their phenolic composition, concerning their antioxidant capacity along with their“in vitro”availability. Folin-Ciocalteu method was used for the determination of phenolic compounds, and the antioxidant capacity was measured by ORAC method. Moreover, the determination of anthocyanins was accomplished with an HPLC-DAD. Finally, we carried out an“in vitro”digestion to simulate the gastrointestinal digestion. All berries showed good antioxidant capacity with significant differences, besides high total phenolic compounds. Content of anthocyanins measured by HPLC-DAD varied between the different berries, namely, blackberries and strawberries which showed higher anthocyanin concentration. After“in vitro”digestion, berries showed poor bioavailability of the analysis of anthocyanins (9.9%–31.7%). Availability of total phenolic compounds was higher than anthocyanins (33%–73%). Moreover, strawberries and blackberries presented the less availability grade. Decrease in antioxidant activity measured by ORAC method was about 90% in all berries studied. Therefore, bioavailability of phenolic compounds remains unclear and more correlation between“in vitro”and“in vivo”studies seems to be necessary.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 380
Author(s):  
María del Pilar Fernández-Poyatos ◽  
Eulogio J. Llorent-Martínez ◽  
Antonio Ruiz-Medina

The phenolic composition and mineral content of Cornezuelo, Cornicabra and Picual olive fruit varieties were investigated during olive ripening in two different harvesting seasons (2017/2018 and 2018/2019). Phytochemical profiles were evaluated by high-performance liquid chromatography (HPLC) with diode-array and mass spectrometry detection. Mineral contents were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Twenty-five compounds were characterized and the main ones quantified. These compounds corresponded mostly to secoiridoids, the main ones being oleuropein, oleoside/secologanoside, oleoside-11-methylester, and oleuropein and comselogoside isomers. Total phenolic contents reached the highest values between December and January, coinciding with the usual harvesting date. This trend was observed in both harvesting seasons, although higher phenolic contents were recorded in season 2018/2019. This was due to the different weather conditions, which caused a lower olive production in season 2017/2018. No clear tendency was observed between mineral content and harvest time in any of the studied seasons. The highest concentration of total phenolics was obtained in Cornezuelo variety (840 mg/100 g) in January 2019 (season 2018/2019). Picual and Cornicabra varieties reached concentrations of 670 mg/100 g and 530 mg/100 g, respectively, also in the last harvesting dates of season 2018/2019.


2020 ◽  
Vol 21 (8) ◽  
pp. 681-701
Author(s):  
Fatma Kazdal ◽  
Fatemeh Bahadori ◽  
Burak Celik ◽  
Abdulselam Ertas ◽  
Gulacti Topcu

Background: The role of Fe+2, Cu+2 and Zn+2 in facilitating aggregation of Amyloid β (Aβ) and consequently, the progression of Alzheimer's disease (AD) is well established. Objective: Development of non-toxic metal chelators is an emerging era in the treatment of AD, in which complete success has not been fully achieved. The purpose of this study was to determine plant extracts with high metal chelator and to encapsulate them in nano-micellar systems with the ability to pass through the Blood Brain Barrier (BBB). Method: Extracts of 36 different Anatolian plants were prepared, total phenolic and flavonoid contents were determined, and the extracts with high content were examined for their Fe+2, Cu+2 and Zn+2 chelating activities. Apolipoprotein E4 (Apo E) decorated nano-formulations of active extracts were prepared using Poly (Lactide-co-Glycolide) (PLGA) (final product ApoEPLGA) to provide BBB penetrating property. Results: Verbascum flavidum aqueous extract was found as the most active sample, incubation of which, with Aβ before and after metal-induced aggregation, resulted in successful inhibition of aggregate formation, while re-solubilization of pre-formed aggregates was not effectively achieved. The same results were obtained using ApoEPLGA. Conclusion: An optimized metal chelator nano-formulation with BBB penetrating ability was prepared and presented for further in-vivo studies.


2020 ◽  
Vol 16 (1) ◽  
pp. 15
Author(s):  
Imanuel Medy Pasanda ◽  
Edi Suryanto ◽  
Gregoria Djarkasi

Locally grown crops with phytochemical antioxidant content i.e. goroho plantain and yellow pumpkin were used to develop composite flour. Mixture experiment with simplex lattice design was used for formulation to study the effect of blending goroho plantain flour (GF) with yellow pumpkin flour (PF) on phytochemical content and antioxidant capacity of developed composite flours. Responses measured including phytochemical content (total phenolic and carotenoid), antioxidant capacity (DPPH assay, FRAP assay, phosphomolybdenum assay, and reducing power assay), colour values of flours, proximate components, and sensory quality of biscuits made from composite flours. The results showed that increase in proportion of PF improved the phytochemical content, antioxidant capacity, and proximate components with the exception of carbohydrates. However, substitution of GF with PF reduced sensory ratings for all the sensory attributes of biscuits developed from composite flours. Among biscuits made from composite flours, sensory ratings for aroma, colour, texture, and taste were not statistically different (p>0.05). PF can be used as fortification material to improve the phytochemical antioxidant content in composite flours prepared from GF and PF, or flours from other locally grown plants.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 315
Author(s):  
Zhenxing Wang ◽  
Zongcai Tu ◽  
Xing Xie ◽  
Hao Cui ◽  
Kin Weng Kong ◽  
...  

This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid–liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 222
Author(s):  
Abdulaziz A. Al-Askar ◽  
WesamEldin I. A. Saber ◽  
Khalid M. Ghoneem ◽  
Elsayed E. Hafez ◽  
Amira A. Ibrahim

Presently, the bioprocessing of agricultural residues to various bioactive compounds is of great concern, with the potential to be used as plant growth promoters and as a reductive of various diseases. Lycopersiconesculentum, one of the most consumed crops in the human diet, is attacked by Fusarium wilt disease, so the main aim is to biocontrol the pathogen. Several fungal species were isolated from decayed maize stover (MS). Trichodermaasperellum was chosen based on its organic acid productivity and was molecularly identified (GenBank accession number is MW195019). Citric acid (CA) was the major detected organic acid by HPLC. In vitro, CA of T.asperellum at 75% completely repressed the growth of Fusariumoxysporum f. sp. lycopersici (FOL). In vivo, soaking tomato seeds in CA enhanced the seed germination and vigor index. T. asperellum and/or its CA suppressed the wilt disease caused by FOL compared to control. There was a proportional increment of plant growth and yield, as well as improvements in the biochemical parameters (chlorophyll pigments, total phenolic contents and peroxidase, and polyphenol oxidase activities), suggesting targeting both the bioconversion of MS into CA and biological control of FOL.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3964
Author(s):  
Bimal-Kumar Ghimire ◽  
Ji-Won Seo ◽  
Chang-Yeon Yu ◽  
Seung-Hyun Kim ◽  
Ill-Min Chung

Sorghum is a major cereal food worldwide, and is considered a potential source of minerals and bioactive compounds. Its wide adaptive range may cause variations in its agronomic traits, antioxidant properties, and phytochemical content. This extensive study investigated variations in seed characteristics, antioxidant properties, and total phenolic (TPC) and flavonoid contents (TFC) of sorghum collected from different ecological regions of 15 countries. The antioxidant potential of the seed extracts of various sorghum accessions was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis 3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging assays. Significant variations in TPC were observed among the sorghum accessions. All 78 sorghum accessions used in this study exhibited significant variations in TFC, with the lowest and highest amount observed in accessions C465 and J542, respectively. DPPH scavenging potential of the seed extracts for all the accessions ranged from 11.91 ± 4.83 to 1343.90 ± 81.02 µg mL−1. The ABTS assay results were similar to those of DPPH but showed some differences in the accessions. Pearson’s correlation analysis revealed a wide variation range in the correlation between antioxidant activity and TPC, as well as TFC, among the sorghum accessions. A wide diversity range was also recorded for the seed characteristics (1000-seed weight and seed germination rate). A dendrogram generated from UPGMA clustering, based on seed traits, antioxidant activity, TPC, and TFC was highly dispersed for these accessions. Variations among the accessions may provide useful information regarding the phytoconstituents, antioxidant properties, and phytochemical contents of sorghum and aid in designing breeding programs to obtain sorghum with improved agronomic traits and bioactive properties.


Author(s):  
Nohemí del C. Reyes-Vázquez ◽  
Laura A. de la Rosa ◽  
Juan Luis Morales-Landa ◽  
Jorge Alberto García-Fajardo ◽  
Miguel Ángel García-Cruz

Background: The pecan nutshell contains phytochemicals with various biological activities that are potentially useful in the prevention or treatment of diseases such as cancer, diabetes, and metabolic imbalances associated with heart diseases. Objective: To update this topic by means of a literature review and include those that contribute to the knowledge of the chemical composition and biological activities of pecan nutshell, particularly of those related to the therapeutic potential against some chronic degenerative diseases associated with oxidative stress. Method: Exhaustive and detailed review of the existing literature using electronic databases. Conclusion: The pecan nutshell is a promising natural product with pharmaceutical uses in various diseases. However, additional research related to the assessment of efficient extraction methods and characterization, particularly the evaluation of the mechanisms of action in new in vivo models, is necessary to confirm these findings and development of new drugs with therapeutic use.


Sign in / Sign up

Export Citation Format

Share Document