scholarly journals Modulation of Gut Microbiota by Lactobacillus casei Fermented Raspberry Juice In Vitro and In Vivo

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3055
Author(s):  
Ting Wu ◽  
Xueqi Chu ◽  
Yuxin Cheng ◽  
Shuxin Tang ◽  
Daniel Zogona ◽  
...  

The aim of this study was to investigate the modulation of gut microbiota by fermented raspberry juice (FRJ) both in vitro and in vivo. Results showed that total phenolic content and antioxidant activities of FRJ reached the highest after fermentation for 42 h. Seventeen phenolic compounds were contained in FRJ, mainly including ellagic acid (496.64 ± 2.91 μg/g) and anthocyanins (total concentration: 387.93 μg/g). FRJ modulated the gut microbiota into a healthy in vitro status, with increase of valeric and isovaleric acids production. In healthy mice, all FRJ treatments improved the production of acetic, butyric and isovaleric acids as well as the gene expression of ZO-1, Claudin-1, Claudin-4, Ocdudin, E-cadherin and Muc-2. Moreover, variable gut microbial compositions were found among the groups fed diet-supplemented the different doses of FRJ, within low and median doses of FRJ may regulate the microbiota to a healthier state compared to the high dose supplementation. This study indicated that fermentation is a potential way to produce plant-based juices, which could reshape the gut microbiota and improve the host health.

2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Pei-Ling Yen ◽  
Sen-Sung Cheng ◽  
Chia-Cheng Wei ◽  
Huan-You Lin ◽  
Vivian Hsiu-Chuan Liao ◽  
...  

The in vitro and in vivo antioxidant activities and its potential to protect against amyloid-β toxicity of essential oils from Zelkova serrata (Thunb.) Makino were investigated in the model organism Caenorhabditis elegans. The results revealed that the essential oil of Z. serrata heartwood exhibited great radical scavenging activities and high total phenolic content. In vivo assays showed significant inhibition of oxidative damage in wild-type C. elegans under juglone-induced oxidative stress and heat shock. Based on results from both in vitro and in vivo assays, the major compound in essential oil of heartwood, (-)-(1 S, 4 S)-7-hydroxycalamenene (1 S, 4 S-7HC), may contribute significantly to the observed antioxidant activity. Further evidence showed that 1 S, 4 S-7HC significantly delayed the paralysis phenotype in amyloid beta-expressing transgenic C. elegans. These findings suggest that 1 S, 4 S-7HC from the essential oil of Z. serrata heartwood has potential as a source for antioxidant or Alzheimer's disease treatment.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 327 ◽  
Author(s):  
Paul Cherry ◽  
Supriya Yadav ◽  
Conall R. Strain ◽  
Philip J. Allsopp ◽  
Emeir M. McSorley ◽  
...  

Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to “a substrate that is selectively utilised by host microorganisms conferring a health benefit”, which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.


Author(s):  
Songul Cetik Yildiz ◽  
Cumali Keskin ◽  
Adnan Ayhanci

The aim of this study was to investigate in-vitro antioxidant properties and in-vivo protective effects of different concentrations of Hypericum triquetrifolium Turra. (HT) seed methanol extracts against acute hepatotoxicity, myelotoxicity and hematotoxicity in rats exposed to overdose of cyclophosphamide (CP). HT seed methanol extracts were tested in view of its in-vitro antioxidant activities as total phenolic contents and DPPH free radical-scavenging activity. To investigate in-vivo protective effects of HT seed methanol extracts on rat tissues; tested animals were divided into nine groups. Three groups only were treated with HT extracts (25, 50 and 100 mg/kg HT) for 6 days. Three groups were pre-treated with the extract of HT (25, 50 and 100 mg/kg HT) for 6 days and on the last day they were injected with single dose of CP (150-mg/kg body weight). Two groups were used as control groups and one group was only treated with CP (150 mg/kg) on the 6th day. The toxic effects of CP and protective effects of HT extracts on the nucleated cells which were produced by bone marrow and serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), oxidative stress index (OSI) levels were investigated biochemically. Additionally, liver tissue samples were examined histopathologically. Our results show that HT seed methanol extract has high total phenolic content and antioxidant activity. Over dose CP administration caused hepatotoxicity, myelotoxicity and hematotoxicity on rat. Whereas, 25, 50 and 100 mg/kg HT plus CP administered groups showed significant protective effects on nucleated cells. And 25, 50, 100 mg/kg HT plus CP treated groups showed an important decrease on serum ALT, ALP, LDH and OSI levels when compared with CP treated group. Our results showed that the administration of different HT doses with high doses of CP significantly reduced hepatotoxicity, myelotoxicity and hematoxicity on rats.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Ratnaker Singh ◽  
Y. Trilochana

For over a century, peptic ulcer has been one of the most common gastrointestinal tract (GIT) disorder. There are number of drugs are now available for treatment. Drugs of herbal origin reduce the offensive factors and have proved to be safe, clinically effective, relatively less expensive, globally competitive, and with better patient tolerance.This study was performed to assess the anti-ulcer activity on different parts of B.aristata. Apart from that, acute toxicity, qualitative chemical analysis, total phenolic content (TPC), total flavonoid content(TFC) and in vitro antioxidant activities were evaluated. The potentially active plant part was selected for screening as gastro protective, in vivo antioxidant and antisecretory activities in ulcerated rats.The 50% ethanolic extract of B. aristata were subjected to preliminary phytochemical screening, estimation of TFC and TPC. The crude extract from the leaves of B. aristata gave best antiulcer activity among flower and stem. In acute toxicity studies, the administration of the crude extract of B. aristata leaves did not reveal any adverse effects or toxicity in rats at fourteen days observations.The results of these studies have shown that ethylexract of B.aristata leaf (EEBAL) produced a significant dose dependent ulcerprotective, antioxidant and antisecretory activity by blocking the activity of proton pump, protecting from antioxidants produced during stress induced ulcer and by enhancing glycoprotein levels.


2020 ◽  
Author(s):  
Yuan Tian ◽  
Feng Ren ◽  
Ling Xu ◽  
Weihua Li ◽  
Mei Liu ◽  
...  

Abstract Background Kaempferol, a flavonoid compound present in many edible plants, has been used in traditional medicine and has various biological functions. Acute liver failure (ALF) is a lethal clinical syndrome with severe liver function damage. There are currently no effective treatments for ALF except for liver transplantation. The aim of this study is to explored the mechanisms underlying the therapeutic effect of kaempferol in ALF. Methods The ALF mouse model was established using D-galactosamine (D-GalN, 700 mg/kg)/lipopolysaccharide (LPS, 10 µg/kg). Two hours before the administration of D-GalN/LPS, different group of mice were pretreated according different doses of kaempferol, 6 hours after injection of D-GalN/LPS, and then killed. The survival rate, liver function and inflammatory cytokine levels were assessed. It was determined whether kaempferol pretreatment protected hepatocytes from ALF induced by D-GalN/LPS via autophagy pathway in vivo and in vitro. Results Pretreatment with a high dose of kaempferol significantly decreased the survival rate and increased severe liver damage; however, pretreatment with a low dose of kaempferol showed the opposite effect. Furthermore, pretreatment with a high dose of kaempferol augment the levels of proinflammatory cytokines and markers of the MAPK signaling pathway, while pretreatment with a low dose of kaempferol showed the opposite effect. In addition, pretreatment with a high dose of kaempferol decreased autophagy, but pretreatment with a low dose of kaempferol increased autophagy in vivo and in vitro. It was also proved that pretreatment with 3-methyadenine (3- MA) or Atg7 siRNA to inhibit autophagy partially negated the hepatoprotective effect of kaempferol (5 mg/kg) pretreatment in ALF mice induced by D-GalN/LPS. Conclusions Our findings demonstrate that effects of different doses of kaempferol on D-GalN/LPS-induced ALF is remarkably different by regulating the autophagy pathway. Therefore, we should consider selecting the optimal dose of kaempferol as a potential treatment method for patients with ALF.


Microbiology ◽  
2010 ◽  
Vol 156 (11) ◽  
pp. 3224-3231 ◽  
Author(s):  
R. A. Kemperman ◽  
S. Bolca ◽  
L. C. Roger ◽  
E. E. Vaughan

Polyphenols, ubiquitously present in the food we consume, may modify the gut microbial composition and/or activity, and moreover, may be converted by the colonic microbiota to bioactive compounds that influence host health. The polyphenol content of fruit and vegetables and derived products is implicated in some of the health benefits bestowed on eating fruit and vegetables. Elucidating the mechanisms behind polyphenol metabolism is an important step in understanding their health effects. Yet, this is no trivial assignment due to the diversity encountered in both polyphenols and the gut microbial composition, which is further confounded by the interactions with the host. Only a limited number of studies have investigated the impact of dietary polyphenols on the complex human gut microbiota and these were mainly focused on single polyphenol molecules and selected bacterial populations. Our knowledge of gut microbial genes and pathways for polyphenol bioconversion and interactions is poor. Application of specific in vitro or in vivo models mimicking the human gut environment is required to analyse these diverse interactions. A particular benefit can now be gained from next-generation analytical tools such as metagenomics and metatranscriptomics allowing a wider, more holistic approach to the analysis of polyphenol metabolism. Understanding the polyphenol–gut microbiota interactions and gut microbial bioconversion capacity will facilitate studies on bioavailability of polyphenols in the host, provide more insight into the health effects of polyphenols and potentially open avenues for modulation of polyphenol bioactivity for host health.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 262
Author(s):  
Shi-Yu Cao ◽  
Bang-Yan Li ◽  
Ren-You Gan ◽  
Qian-Qian Mao ◽  
Yuan-Feng Wang ◽  
...  

Tea is a popular beverage and shows very strong in vitro antioxidant activity. However, the relationship among in vitro and in vivo antioxidant activities in teas is seldom reported. In this study, in vivo antioxidant and hepatoprotective activities of 32 selected Chinese teas were evaluated on a mouse model with acute alcohol-induced liver injury. The results showed that most teas significantly reduced the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, triacylglycerol, and total bilirubin in the sera of mice at a dose of 400 mg/kg. In addition, most teas greatly decreased the malondialdehyde level and increased the levels of superoxide dismutase, glutathione peroxidase, and glutathione in the liver of mice, indicating the antioxidant and hepatoprotective activities of teas. Furthermore, the in vivo antioxidant activity of dark tea was stronger than that of green tea, opposite to the results of the in vitro study. Among these 32 teas, Black Fu Brick Tea, Pu-erh Tea, and Qing Brick Tea showed the strongest antioxidant and hepatoprotective activities. Moreover, total phenolic content as well as the contents of epicatechin, gallocatechin gallate, and chlorogenic acid were found to contribute, at least partially, to the antioxidant and hepatoprotective actions of these teas. Overall, teas are good dietary components with antioxidant and hepatoprotective actions.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1579
Author(s):  
Mhaveer Singh ◽  
Mohammad Ahmed Khan ◽  
Kamal Y. T. ◽  
Javed Ahmad ◽  
Usama A. Fahmy ◽  
...  

The study aimed to investigate the protective action of jatamansi (Nardostachys jatamansi DC.) against doxorubicin cardiotoxicity. Methanolic extract of jatamansi (MEJ) was prepared and standardized using HPTLC fingerprinting, GC-MS chemoprofiling, total phenolic content, and antioxidant activity in vitro. Further in vivo activity was evaluated using rodent model. Animals were divided into five groups (n = 6) namely control (CNT) (Normal saline), toxicant (TOX, without any treatment), MEJ at low dose (JAT1), MEJ at high dose (JAT2), and standard desferrioxamine (STD). All groups except control received doxorubicin 2.5 mg per Kg intra-peritoneally for 3 weeks in twice a week regimen. After 3 weeks, the blood samples and cardiac tissues were collected from all groups for biochemical and histopathological evaluation. Treatment with MEJ at both dose levels exhibited significant reduction (p < 0.001 vs. toxicant) of serum CK-MB (heart creatine kinase), LDH (Lactate dehydrogenase) & HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) levels, and tissue MDA (melondialdehyde) level; insignificant difference was observed (p > 0.05) in TNF-alpha (tumour necrosis factor), IL-6 (interleukine-6) levels and caspase activity as compared to TOX. Histopathological evaluation of cardiac tissues of different treatment groups further reinforced the findings of biochemical estimation. This study concludes that jatamansi can protect cardiac tissues from oxidative stress-induced cell injury and lipid peroxidation as well as against inflammatory and apoptotic effects on cardiac tissues.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1647
Author(s):  
Zeyneb Chaibeddra ◽  
Salah Akkal ◽  
Houria Ouled-Haddar ◽  
Artur M. S. Silva ◽  
Ammar Zellagui ◽  
...  

Scrophularia tenuipes is an Algerian-Tunisian endemic species, which has not been studied yet. Ethyl acetate (EA) and n-butanol (Bu) fractions obtained from Scrophularia tenuipes were investigated for their health benefit properties, in particular with respect to in vivo/in vitro anti-inflammatory and antioxidant activities, as well as their potential to inhibit key enzymes with impact in diabetes (α-glucosidase and α-amylase). The fractions had a distinct phytochemical composition, of which EA was richer in total phenolic compounds (225 mg GAE/g) and mostly composed of the phenylethanoid acetyl martynoside. Compared to EA, Bu had higher amounts of total flavonoids, and according to the result obtained from UHPLC-DAD-ESI-MSn analysis, harpagoside (iridoid) was its major phytochemical. EA fraction was quite promising with regard to the in vivo (at 200 mg/kg, po) anti-inflammatory effect (62% and 52% for carrageenan-induced rat paw edema and xylene-induced ear edema tests, respectively), while Bu fraction exhibited a stronger antioxidant capacity in all tests (IC50 = 68 µg/mL, IC50 = 18 µg/mL, IC50 = 18 µg/mL and A0.50 = 43 µg/mL for DPPH●, ABTS•+, O2•− scavenging assays and cupric-reducing antioxidant capacity method, respectively). Both fractions also showed a strong effect against α-amylase enzyme (IC50 = 8 µg/mL and 10 µg/mL for EA and Bu fraction, respectively).


Sign in / Sign up

Export Citation Format

Share Document