scholarly journals Cysteinyl Leukotriene Pathway and Cancer

2021 ◽  
Vol 23 (1) ◽  
pp. 120
Author(s):  
Ming-Ju Tsai ◽  
Wei-An Chang ◽  
Cheng-Hao Chuang ◽  
Kuan-Li Wu ◽  
Chih-Hung Cheng ◽  
...  

Cancer remains a leading cause of death worldwide, despite many advances being made in recent decades. Changes in the tumor microenvironment, including dysregulated immunity, may contribute to carcinogenesis and cancer progression. The cysteinyl leukotriene (CysLT) pathway is involved in several signal pathways, having various functions in different tissues. We summarized major findings of studies about the roles of the CysLT pathway in cancer. Many in vitro studies suggested the roles of CysLTs in cell survival/proliferation via CysLT1 receptor (CysLT1R). CysLT1R antagonism decreased cell vitality and induced cell death in several types of cancer cells, such as colorectal, urological, breast, lung and neurological malignancies. CysLTs were also associated with multidrug resistance of cancer, and CysLT1R antagonism might reverse chemoresistance. Some animal studies demonstrated the beneficial effects of CysLT1R antagonist in inhibiting tumorigenesis and progression of some cancer types, particularly colorectal cancer and lung cancer. The expression of CysLT1R was shown in various cancer tissues, particularly colorectal cancer and urological malignancies, and higher expression was associated with a poorer prognosis. The chemo-preventive effects of CysLT1R antagonists were demonstrated in two large retrospective cohort studies. In summary, the roles of the CysLT pathway in cancer have been delineated, whereas further studies are still warranted.

2021 ◽  
Vol 10 ◽  
Author(s):  
Yunsha Zhang ◽  
Weiling Pu ◽  
Mélanie Bousquenaud ◽  
Sarah Cattin ◽  
Jelena Zaric ◽  
...  

Colorectal cancer (CRC) is one of the most common cancer worldwide. Chronic inflammation contributes to CRC development and progression. Emodin, is a natural anthraquinone derivative with anti-oxidant, anti-inflammatory, and anti-tumor activities. We used the AOM/DSS model of colitis-associated intestinal tumorigenesis to characterize the effect of Emodin on inflammation and tumorigenesis at weeks 3, 5, and 14 after initiation with AOM. At all three time points, Emodin (50 mg/kg) reduced inflammatory cell (i.e. CD11b+ and F4/80+) recruitment, cytokine (i.e. TNFα, IL1α/β, IL6, CCL2, CXCL5) and pro-inflammatory enzymes (i.e. COX-2, NOS2) expression in the tumor microenvironment, while promoting recruitment of CD3+ T lymphocytes at 14 weeks. Emodin decreased the incidence of premalignant lesions (adenoma) at week 3, the incidence of dysplastic lesions and carcinomas at week 5, and the incidence, size and the invasiveness of carcinomas at week 14. Emodin also reduced the acute clinical intestinal symptoms (i.e. bleeding and diarrhea) during DSS treatment. In vitro, Emodin inhibited the expression of pro-inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, and reduced viability, adhesion, migration, and fibroblasts-induced invasion of SW620 and HCT116 colon cancer cells. In conclusion, this work demonstrates that Emodin suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression. These results instigate further studies on Emodin as a natural agent for the prevention or treatment of colorectal cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


2021 ◽  
Author(s):  
Chaofan Peng ◽  
Yuqian Tan ◽  
Peng Yang ◽  
Kangpeng Jin ◽  
Chuan Zhang ◽  
...  

Abstract BackgroundEmerging studies have investigated circRNAs as significant regulation factors in multiple cancer progression. Nevertheless, the biological functions and underlying mechanisms of circRNAs in colorectal cancer progression remain unclear.MethodsA novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of phenotype experiments in vitro and vivo were performed to investigate the role of circ-GALNT16 in CRC. FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were constructed to explore the molecular mechanisms of circ-GALNT16 in colorectal cancer.ResultsCirc-GALNT16 was downregulated in colorectal cancer and negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastasis ability of colorectal cancer in vitro and vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which resulted in the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. Furthermore, RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex.ConclusionsCirc-GALNT16 suppressed CRC progression via inhibiting Serpine1 expression through adjusting the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might work as a biomarker and therapeutic target for CRC.


Author(s):  
Jie Zhang ◽  
Xiao-Yan Li ◽  
Ping Hu ◽  
Yuan-Sheng Ding

Previous study indicates that long noncoding RNA NORAD could serve as a competing endogenous RNA to pancreatic cancer metastasis. However, its role in colorectal cancer (CRC) needs to be investigated. In the present study, we found that the expression of NORAD was significantly upregulated in CRC tissues. Furthermore, the expression of NORAD was positively related with CRC metastasis and patients’ poor prognosis. Knockdown of NORAD markedly inhibited CRC cell proliferation, migration, and invasion but induced cell apoptosis in vitro. In vivo experiments also indicated an inhibitory effect of NORAD on tumor growth. Mechanistically, we found that NORAD served as a competing endogenous RNA for miR-202-5p. We found that there was an inverse relationship between the expression of NORAD and miR-202-5p in CRC tissues. Moreover, overexpression of miR-202-5p in SW480 and HCT116 cells significantly inhibited cellular proliferation, migration, and invasion. Taken together, our study demonstrated that the NORAD/miR-202-5p axis plays a pivotal function on CRC progression.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1586
Author(s):  
Leonie R. Price ◽  
Javier Martinez

The emergence of new tobacco heating products and electronic nicotine delivery systems (ENDS) is changing the way humans are exposed to nicotine. The purpose of this narrative review is to provide a broad overview of published scientific literature with respect to the effects of nicotine on three key health-related areas: 1) cardiovascular risk, 2) carcinogenesis and 3) reproductive outcomes. These areas are known to be particularly vulnerable to the effects of cigarette smoke, and in addition, nicotine has been hypothesized to play a role in disease pathogenesis. Acute toxicity will also be discussed. The literature to February 2019 suggests that there is no increased cardiovascular risk of nicotine exposure in consumers who have no underlying cardiovascular pathology. There is scientific consensus that nicotine is not a direct or complete carcinogen, however, it remains to be established whether it plays some role in human cancer propagation and metastasis. These cancer progression pathways have been proposed in models in vitro and in transgenic rodent lines in vivo but have not been demonstrated in cases of human cancer. Further studies are needed to determine whether nicotine is linked to decreased fertility in humans. The results from animal studies indicate that nicotine has the potential to act across many mechanisms during fetal development. More studies are needed to address questions regarding nicotine exposure in humans, and this may lead to additional guidance concerning new ENDS entering the market.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Hong-li Jiao ◽  
Bin-shu Weng ◽  
Shan-shan Yan ◽  
Zi-mo Lin ◽  
Shu-yang Wang ◽  
...  

AbstractOxysterol-binding protein like protein 3 (OSBPL3) has been shown involving in the development of several human cancers. However, the relationship between OSBPL3 and colorectal cancer (CRC), particularly the role of OSBPL3 in the proliferation, invasion and metastasis of CRC remains unclear. In this study, we investigated the role of OSBPL3 in CRC and found that its expression was significantly higher in CRC tissues than that in normal tissues. In addition, high expression of OSBPL3 was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of OSBPL3 promoted the proliferation, invasion and metastasis of CRC in vitro and in vivo models. Moreover, we revealed that OSBPL3 promoted CRC progression through activation of RAS signaling pathway. Furthermore, we demonstrated that hypoxia induced factor 1 (HIF-1A) can regulate the expression of OSBPL3 via binding to the hypoxia response element (HRE) in the promoter of OSBPL3. In summary, Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. This novel mechanism provides a comprehensive understanding of both OSBPL3 and the RAS signaling pathway in the progression of CRC and indicates that the HIF1A–OSBPL3–RAS axis is a potential target for early therapeutic intervention in CRC progression.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1968 ◽  
Author(s):  
Danilo Predes ◽  
Luiz F. S. Oliveira ◽  
Laís S. S. Ferreira ◽  
Lorena A. Maia ◽  
João M. A. Delou ◽  
...  

The deregulation of the Wnt/β-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/β-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/β-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs β-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/β-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document