scholarly journals Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.)

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 481
Author(s):  
Gulom Bekmirzaev ◽  
Baghdad Ouddane ◽  
Jose Beltrao ◽  
Mukhamadkhon Khamidov ◽  
Yoshiharu Fujii ◽  
...  

The main purpose of the two consecutive experimental studies presented here was to compare the effect of salinity on nutrients in leaves of the halophytic plant species Portulaca oleracea L. and in soil. The first experiment was conducted to study the effect of salinity on plant growth, biomass accumulation, yield, root layer development, salt accumulation, and the dynamics of changes in mineral substances in plants and soil. In the second experiment, P. oleracea seeds were sown directly into salinized soil (treated immediately before plant growth) to determine the nutrient levels in leaves and soil. Three salinity treatments (saline water solution with NaCl: T1, 5 dS m−1; T2, 9.8 dS m−1; and T3, 20 dS m−1) and a control treatment (T0, 1 dS m−1) were used in the first experiment. The soil in the second experiment was used in a previous study (performed immediately before P. oleracea growth) (salinized soil: T1, 7.2 dS m−1; T2, 8.8 dS m−1; T3, 15.6 dS m−1; T0, 1.9 dS m−1). The plants were irrigated with tap water at amounts in the range of 0.25–0.50 L/pot. Analysis of the experimental results showed that P. oleracea is resistant to salinity, is able to remove ions (400–500 kg ha−1 NaCl), and can be grown in saline soil. The results indicated that P. oleracea is able to grow in high-salinity soil. This finding was confirmed by the dry matter obtained under high-salinity conditions. Salinity stress affected nutrient uptake in leaves and soil.

2017 ◽  
Vol 48 (2) ◽  
Author(s):  
Al- Khshali & Al- Hilalli

The present study was conducted to investigate the effect of high salinity on the some stress parameters of common carp (Cyprinus carpio) which gradually exposed to salt concentrations of 5, 10 and 15g/liter, as well as tap water (control 0.1g/liter) for 90 days .80 fish were randomly distributed on eight glass tanks with 2 replicates as 10 fish / replicate at average weight of 15 ± 3 g to study the effect of salinity on the Total protein , Glucose ,and Lactate in blood plasma , Fish were fed during the trial on commercial diet with 31.9 % protein content.. Results showed that an increase in the total protein to 4.98 and then decrease to 4.60  and 3.90 g/100 cm3 when the salinity increased to 5, 10 and 15 g/l respectively, compared with the control treatment (4.94 g/100 cm3).  Glucose reached 75.11, 91.20 and 95.17 mg/100 ml at the concentrations of 5, 10 and 15 g/l respectively, compared with the control treatment (66.64 mg/100ml). Lactate also increased to 43.12, 45.38  and 48.53  mg/100 ml , when the salinity increased to  5 , 10 and 15 g/l respectively, in comparison with control treatment  (40.65 mg/100 ml) .


2019 ◽  
Vol 20 (5) ◽  
pp. 1059 ◽  
Author(s):  
Akhtar Ali ◽  
Albino Maggio ◽  
Ray Bressan ◽  
Dae-Jin Yun

Abiotic stresses generally cause a series of morphological, biochemical and molecular changes that unfavorably affect plant growth and productivity. Among these stresses, soil salinity is a major threat that can seriously impair crop yield. To cope with the effects of high salinity on plants, it is important to understand the mechanisms that plants use to deal with it, including those activated in response to disturbed Na+ and K+ homeostasis at cellular and molecular levels. HKT1-type transporters are key determinants of Na+ and K+ homeostasis under salt stress and they contribute to reduce Na+-specific toxicity in plants. In this review, we provide a brief overview of the function of HKT1-type transporters and their importance in different plant species under salt stress. Comparison between HKT1 homologs in different plant species will shed light on different approaches plants may use to cope with salinity.


2019 ◽  
Vol 41 (12) ◽  
Author(s):  
Mohammad Ansari ◽  
Farid Shekari ◽  
Mohammad Hossein Mohammadi ◽  
Katalin Juhos ◽  
György Végvári ◽  
...  

AbstractAlfalfa (Medicago sativa L.) plant growth decreases when cultivated under salinity or irrigated with salty water. Inoculation with plant growth-promoting bacteria (PGPB) is a method for mitigating the harmful effects of salinity on plants growth. To investigate salt-tolerant PGPB with salt-tolerant and salt-sensitive alfalfa cultivar interactions under salinity, some physiological and agronomical aspects were investigated. The inoculated plants of alfalfa cultivars with Hartmannibacter. diazotrophicus and Pseudomonas sp. bacteria were compared with non-inoculated plants. Plants were grown in growth room and irrigated with tap water until 6–7 weeks, and then, salinity stress imposed by irrigating with tap water (control), 10 dS m−1 and 20 dS m−1 NaCl. Salinity reduced relative water content (RWC), membrane stability index (MSI), K+, photosynthesis rate (Pn) and stomatal conductance (gs), leaf number, height, and dry weight, and increased sodium in all cultivars. Inoculation of cultivars with both PGPB mitigated the negative effects of salinity on plants growth by increasing the root length and weight, nodule number, chlorophyll pigments, RWC, MSI, Pn, and gs. Chlorophyll pigments, plant height and leaf number, Na+, K+/Na+, and nodule number improved more pronounced through inoculating with Pseudomonas sp., whereas K+, carotenoids, and RWC improved more pronounced through H. diazotrophicus under salinity. The results showed inoculation with two bacteria improved growth performance in salt-tolerant and salt-sensitive cultivars under 10 dS m−1, but at high salinity (20 dS m−1), inoculation was successful only in salt-tolerant alfalfa cultivars.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1237
Author(s):  
Antonios Chrysargyris ◽  
Spyridon A. Petropoulos ◽  
Dejan Prvulovic ◽  
Nikolaos Tzortzakis

Abiotic factors in nutrient solutions (NSs), such as salinity and high electrical conductivity (EC), may adversely alter plant growth and crop performance. However, there are medicinal/aromatic plants which can not only withstand these adverse conditions, but which can also increase their productivity or even enhance their quality in such conditions. As fresh water sources suitable for irrigation are becoming more and more limited, the use of low-quality water sources and hydroponic growing systems have been suggested as the main alternatives. Towards that direction, this study aims to evaluate the effect of high EC levels in NSs on geranium (Pelargonium graveolens L’Hér.) and common verbena (Verbena officinallis L.) plants cultivated in a soilless (perlite) hydroponics system. Plants were irrigated with a full nutrient solution of EC 2.1 dS m−1 and pH 5.8 until they reached a uniform size. Then, three treatments were applied, namely: (a) a control treatment with an EC of 2.1 dS m−1 in the NS, (b) a high-salinity NS created by adding 75 mM of NaCl (EC under 8.5 dS m−1) and (c) a concentrated NS with an EC of 8.5 dS m−1. In pelargonium, high salinity decreased the total phenolic and total flavonoid contents; antioxidant capacity; N, K, Mg and P content; as well as chlorophyll fluorescence, compared to the control treatment. On the other hand, increased salinity levels increased the Na and Ca content and stomatal resistance. In common verbena, salinity decreased total phenolic content and chlorophyll fluorescence but increased total flavonoid content; antioxidants; leaf K, P, Na, Cu and Zn content; and stomatal resistance, compared to the control. In both species, high EC did not affect polyphenols, flavonoids or antioxidants, whereas it increased stomatal resistance and nutrient accumulation in the leaves, and decreased chlorophyll fluorescence compared to the control treatment. Damage indices, indicated by lipid peroxidation, hydrogen peroxide production and the elevation of enzymes’ antioxidant activities, were evidenced in both saline- and high-EC-treated plants. In conclusion, despite having the same EC levels in the nutrient solution, it seems that ionic stress caused by high mineral concentrations in the nutrient solution had less severe effects on the tested plants than the relevant osmotic stress caused by high salinity due to the addition of NaCl in the nutrient solution.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 571
Author(s):  
Willy Irakoze ◽  
Hermann Prodjinoto ◽  
Séverin Nijimbere ◽  
Jean Berchmans Bizimana ◽  
Joseph Bigirimana ◽  
...  

Salinity may strongly influence the interaction between plant roots and surrounding soil, but this has been poorly studied for sodium sulfate (Na2SO4). The aim of this study was to investigate the effect of sodium chloride (NaCl) and Na2SO4 salinities on the soil chemical properties as well as rice physiological- and yield-related parameters of two contrasted cultivars (V14 (salt-sensitive) and Pokkali (salt-resistant)). Pot experiments were conducted using soil and electrolyte solutions, namely NaCl and Na2SO4, inducing two electrical conductivity levels (EC: 5 or 10 dS m−1) of the soil solutions. The control treatment was water with salt-free tap water. Our results showed that soil pH increased under Na2SO4 salinity, while soil EC increased as the level of saline stress increased. Salinity induced an increase in Na+ concentrations on solid soil complex and in soil solution. NaCl reduced the stomatal density in salt-sensitive cultivar. The total protein contents in rice grain were higher in V14 than in Pokkali cultivar. Saline stress significantly affected all yield-related parameters and NaCl was more toxic than Na2SO4 for most of the studied parameters. Pokkali exhibited a higher tolerance to saline stress than V14, whatever the considered type of salt. It is concluded that different types of salts differently influence soil properties and plant responses and that those differences partly depend on the salt-resistance level of the considered cultivar.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 3
Author(s):  
Maite Olaetxea ◽  
Veronica Mora ◽  
Roberto Baigorri ◽  
Angel M. Zamarreño ◽  
Jose M. García-Mina

Some studies have reported that the capacity of humic substances to improve plant growth is dependent on their ability to increase root hydraulic conductivity. It was proposed that this effect is directly related to the structural conformation in solution of these substances. To study this hypothesis, the effects on root hydraulic conductivity and growth of cucumber plants of a sedimentary humic acid and two polymers—polyacrylic acid and polyethylene glycol—presenting a molecular conformation in water solution different from that of the humic acid have been studied. The results show that whereas the humic acid caused an increase in root hydraulic conductivity and plant growth, both the polyacrylic acid and the polyethylene glycol did not modify plant growth and caused a decrease in root hydraulic conductivity. These results can be explained by the different molecular conformation in water solution of the three molecular systems. The relationships between these biological effects and the molecular conformation of the three molecular systems in water solution are discussed.


2018 ◽  
Vol 85 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Tibor Janda ◽  
Radwan Khalil ◽  
Judit Tajti ◽  
Magda Pál ◽  
Gabriella Szalai ◽  
...  

Nabatia ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Palupi N.P

Abiotic stress conditions with high salinity cause a decrease in plant growth and production in citrus plants. The application of mycorrhizal fungi with various species is expected to be able to overcome this problem to improve plant root conditions. The results showed that the application of mycorrhizal fungi was able to improve roots so as to increase nutrient absorption, be able to maintain plant conditions under salinity stress gradually, and be able to increase the capacity of higher seedlings to control ROS formation and to activate enzymatic and non-enzymatic antioxidant defenses.


Sign in / Sign up

Export Citation Format

Share Document