scholarly journals Effect of Nanodiamond Concentration and the Current Density of the Electrolyte on the Texture and Mechanical Properties of Ni/Nanodiamond Composite Coatings Produced by Electrodeposition

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1105
Author(s):  
Meihua Liu ◽  
Hongnan Liu ◽  
Dongai Wang ◽  
Bing Liu ◽  
Yan Shi ◽  
...  

An Ni/nanodiamond composite coating was deposited on carbon steel in a traditional Watt’s solution without additives via direct current (DC) electroplating. The effects of the nanodiamond concentration and current density in the plating solution on the morphology, grain size, and texture of the Ni/nanodiamond composite coating were observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The distribution of the nanodiamond particles in the composite coating was investigated by Raman spectra and SEM. The mechanical properties of the composite coating, such as its elastic modulus and hardness, were examined using a Nano Indenter XP nanometer mechanical test system. The coefficient of friction was tested using a Universal Micro-Tribotester. The results demonstrated that the preferential orientation of the Ni/nanodiamond composite coating varied from the (111) crystal orientation of the pure nickel coating to the (200) crystal orientation. When the nanodiamond concentration in the plating solution was 8.0 g/L and the current density was 3.0 A/dm2, the hardness of the composite coating reached the maximum value of 5.302 GPa and the friction factor was maintained at around 0.1. The average grain size of the composite coating was reduced to 20.4 nm.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5461
Author(s):  
Dongai Wang ◽  
Feihui Li ◽  
Yan Shi ◽  
Meihua Liu ◽  
Bin Liu ◽  
...  

The electrodeposition process parameters were optimized for the acquisition of high-strength monolithic nickel layers on Q235A substrates based on the Watts nickel plating solution using the DC electrodeposition method. Based on the study of the electrochemical polarization behavior of nickel ions in Watts’ plating solution, 16 experimental protocols were selected according to the orthogonal test method. The residual stress, microhardness, modulus of elasticity, and surface roughness of the nickel plating were tested by X-ray diffractometer, nano-mechanical test system, and surface profilometer, respectively, to investigate the influence of current density, temperature, and PH on the mechanical properties of nickel plating, so as to determine the best process solution for the preparation of high-strength nickel plating. The results of the study show that the mechanical properties of the nickel deposits electrodeposited onto Q235A are optimized when plating at a current density of 3 A/dm2, a bath temperature of 45 °C, and a pH of 3.5. The nickel-plated layer has a minimum grain size of 34.8 nm, a microhardness of 3.86 GPa, a modulus of elasticity of 238 GPa, and a surface roughness Ra of 0.182 μm.


2007 ◽  
Vol 345-346 ◽  
pp. 1533-1536 ◽  
Author(s):  
Teck Su Oh ◽  
Jae Ho Lee ◽  
Ji Young Byun ◽  
Tae Sung Oh

In Ni-SiC composite coating, the SiC content is dependent on the surface properties of SiC particles. As sulfuric acid has a strong dehydration force, addition of sulfuric acid in the Ni sulfamate bath changed the surface properties of SiC particles, affecting the codeposition behavior of SiC particles. Also the additives such as SDS affect the electrodeposition behavior of the Ni-SiC composite coating. In this study, effects of the HSO4 ‾ and the current density on the electrodeposition behavior of the Ni-SiC composite coating have been investigated. The Ni-SiC composite coatings were electrodeposited at current densities of 50~200mA/cm2. The surface and cross-sectional morphologies of the Ni-SiC composite coatings were observed using SEM, and their mechanical properties were characterized with micro-Vikers hardness.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 427
Author(s):  
Jiao Meng ◽  
Liuxia Sun ◽  
Yue Zhang ◽  
Feng Xue ◽  
Chenglin Chu ◽  
...  

Static recrystallization plays a key role in the fabrication of thin Mg wires as well as the mechanical properties of the final wires. The effect of annealing parameters on the evolution of the microstructures, textures and mechanical properties of cold-drawn pure Mg wire was studied by means of optical microscopy (OM), electron backscatter diffraction (EBSD), a tensile test and a hardness test. This study shows that the mechanical properties of as-annealed pure thin Mg wire is affected not only by the average grain size, but also the uniformity of the recrystallization grains, including the uniformity of grain size and crystal orientation distribution (more random texture component). With increasing annealing temperature and time, the uniformity of recrystallization grain size first improved and then declined after obvious grain growth. At the same time, the randomness of the basal texture component declined with the development of recrystallization. Annealing at 300 °C for 30 min caused the most uniform grain size and orientation distribution in the microstructures, thus contributing to the best plasticity among all experimental wires. It is reasonable to conclude that more uniform and regular recrystallized grains and a more randomly distributed crystal orientation would be benefit for the mechanical properties of Mg wires.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


Sign in / Sign up

Export Citation Format

Share Document