scholarly journals Flower-like SnO2 Nanoparticle Biofabrication Using Pometia pinnata Leaf Extract and Study on Its Photocatalytic and Antibacterial Activities

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3012
Author(s):  
Is Fatimah ◽  
Gani Purwiandono ◽  
Habibi Hidayat ◽  
Suresh Sagadevan ◽  
Sheikh Ahmad Izaddin Sheikh Mohd Ghazali ◽  
...  

The present study reported biofabrication of flower-like SnO2 nanoparticles using Pometia pinnata leaf extract. The study focused on the physicochemical characteristics of the prepared SnO2 nanoparticles and its activity as photocatalyst and antibacterial agent. The characterization was performed by XRD, SEM, TEM, UV-DRS and XPS analyses. Photocatalytic activity of the nanoparticles was examined on bromophenol blue photooxidation; meanwhile, the antibacterial activity was evaluated against Klebsiella pneumoniae, Escherichia coli Staphylococcus aureus and Streptococcus pyogenes. XRD and XPS analyses confirmed the single tetragonal SnO2 phase. The result from SEM analysis indicates the flower like morphology of SnO2 nanoparticles, and by TEM analysis, the nanoparticles were seen to be in uniform spherical shapes with a diameter ranging from 8 to 20 nm. SnO2 nanoparticles showed significant photocatalytic activity in photooxidation of bromophenol blue as the degradation efficiency reached 99.93%, and the photocatalyst exhibited the reusability as the degradation efficiency values were insignificantly changed until the fifth cycle. Antibacterial assay indicated that the synthesized SnO2 nanoparticles exhibit an inhibition of tested bacteria and showed a potential to be applied for further environmental and medical applications.

2019 ◽  
Vol 17 (1) ◽  
pp. 246-253 ◽  
Author(s):  
Dawit Tamire Handago ◽  
Enyew Amare Zereffa ◽  
Bedasa Abdisa Gonfa

AbstractThe current studies presented the green synthesis of zinc oxide and copper doped ZnO nanoparticles (NPs) using different ratios of Neem leaf extract and its antibacterial application on drug-resistant bacteria. The synthesized NPs were characterized using: X-ray diffractions (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), UV–visible spectroscopy and a simultaneous DTA-TGA thermal analyzer. All the synthesized materials were stable above 400°C. The powder diffraction studies indicated the formation of phase pure materials with wurtzite structure for pure ZnO and 0.5%, 1%, 1.5% Cu doped ZnO with the crystallite size in the range of 16.07 – 23.74 nm. SEM analysis revealed the formation of spherical shaped NPs with large grain size for 10% (v/v) ratio of aqueous leave extract. The aqueous extract of neem act as capping agent and prevent the NPs from agglomeration. The spectral studies confirmed the formation of NPs with the absorbance peak that is different from the micro-size ZnO. The antibacterial activities of the synthesized materials ZnO (1:1) against Staphylococcus aureus and uncalcined ZnO (7:3) and (Zn0.985Cu0.015O) against Bacillus subtilis were enhanced when referenced to the standard gentamicin.


Author(s):  
Stanley J. Klepeis ◽  
J.P. Benedict ◽  
R.M Anderson

The ability to prepare a cross-section of a specific semiconductor structure for both SEM and TEM analysis is vital in characterizing the smaller, more complex devices that are now being designed and manufactured. In the past, a unique sample was prepared for either SEM or TEM analysis of a structure. In choosing to do SEM, valuable and unique information was lost to TEM analysis. An alternative, the SEM examination of thinned TEM samples, was frequently made difficult by topographical artifacts introduced by mechanical polishing and lengthy ion-milling. Thus, the need to produce a TEM sample from a unique,cross-sectioned SEM sample has produced this sample preparation technique.The technique is divided into an SEM and a TEM sample preparation phase. The first four steps in the SEM phase: bulk reduction, cleaning, gluing and trimming produces a reinforced sample with the area of interest in the center of the sample. This sample is then mounted on a special SEM stud. The stud is inserted into an L-shaped holder and this holder is attached to the Klepeis polisher (see figs. 1 and 2). An SEM cross-section of the sample is then prepared by mechanically polishing the sample to the area of interest using the Klepeis polisher. The polished cross-section is cleaned and the SEM stud with the attached sample, is removed from the L-shaped holder. The stud is then inserted into the ion-miller and the sample is briefly milled (less than 2 minutes) on the polished side. The sample on the stud may then be carbon coated and placed in the SEM for analysis.


2019 ◽  
Vol 5 (3) ◽  
pp. 1-10
Author(s):  
Puspa Julistia Puspita ◽  
Mega Safithri ◽  
Nirmala Peni Sugiharti

Piper crocatum is one of medicinal herbal plants with a large number of benefits. Usually herbal plants have activity as antibacterial agent. Therefore, the objectives of this research were to obtain information on antibacterial activities of the leaf extracts of Piper crocatum againts four types of bacteria, in that Staphylococcus, Bacillus substilis, Escherichia coli, and Pseudomonas aeruginosa and then to analyze the phytochemistry of the leaf extracts of Piper crocatum. The leaves of Piper crocatum were extracted by maceration and reflux using ethanol 30%. The assays of the antibacterial activities and phytochemistry on the extracts were carried out using the method of Maria Bintang. Results showed that the yield of the extraction using ethanol by maceration method was 20.8%. Meanwhile, using the reflux method, the yield was obtained about 26.25%. The phytochemistry analysis showed that the leaf extracts of Piper crocatum contained alkaloid, steroid and tanin. According to this study, it was found that the leaf extract of Piper crocatum can be used to inhibit the growth of B. subtilis and P. aeuruginosa, but can not inhibit the growth of E.coli and S. aureus.


2018 ◽  
Vol 6 (1) ◽  
pp. 22-30
Author(s):  
C. Lalhriatpuia ◽  
◽  
Thanhming liana ◽  
K. Vanlaldinpuia

The photocatalytic activity of Nanopillars-TiO2 thin films was assessed in the degradation of Bromophenol blue (BPB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the XRD, SEM and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data showed anatase phase of TiO2 particles with average particle size of 25.4 and 21.9 nm, for S1 and S2 catalysts respectively. The SEM and AFM images indicated the catalyst composed with Nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The average height of the pillars was found to be 180 and 40 nm respectively for the S1 and S2 catalyst. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of BPB using the UV light was studied at wide range of physico-chemical parametric studies to determine the mechanism of degradation as well as the practical applicability of the technique. The batch reactor operations were conducted at varied pH (pH 4.0 to 10.0), BPB initial concentration (1.0 to 20.0 mg/L) and presence of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of BPB. The maximum percent removal of BPB was observed at pH 6.0 and a low initial concentration of the pollutant highly favours the photocatalytic degradation using thin films. The presence of several interfering ions suppressed the photocatalytic activity of thin films to some extent. The time dependence photocatalytic degradation of BPB was demonstrated with the pseudo-first-order rate kinetics. Study was further extended with total organic carbon measurement using the TOC (Total Organic Carbon) analysis. This demonstrated an apparent mineralization of BPB from aqueous solutions.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Reetika Singh ◽  
Christophe Hano ◽  
Gopal Nath ◽  
Bechan Sharma

Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV–Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


Sign in / Sign up

Export Citation Format

Share Document