scholarly journals Testing of Silicon Rubber/Montmorillonite Nanocomposite for Mechanical and Tribological Performance

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3050
Author(s):  
Avinash Shinde ◽  
I. Siva ◽  
Yashwant Munde ◽  
Vishal Deore ◽  
Mohamed Thariq Hameed Sultan ◽  
...  

Nanocomposite made by blending nano-montmorillonite (MMT) and Silicon Rubber (SR) for mechanical and tribological performance is explored in this work. Different configurations of MMT/SR nanocomposite, with 0, 0.5, 2 and 5 wt % of MMT are manufactured by two roll mixing methods. Noticeable improvement in the mechanical and tribological performance is observed, which is also justified by a morphological study of fractured and wear surfaces through SEM. Two percent of MMT loading is found to be the optimum content that shows excellent performance compared to other compositions. The performance improvement can be linked to the good interfacial interaction between the MMT and SR. Statistical modeling through ANOVA is carried out for tribological performance, which reveals the influence of load on the coefficient of friction (COF) and the influence of sliding distance on the wear rate.

2010 ◽  
Vol 97-101 ◽  
pp. 1665-1668 ◽  
Author(s):  
Xiao Peng ◽  
Li Zhuan ◽  
Xiong Xiang

Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by warm compacted in-situ reaction. The C/C-SiC composites microstructure and tribological properties at different brake speeds were investigated. The results indicated that the composites were composed of 58 wt% C, 37 wt% SiC and 5 wt% Si. The density and open porosity were 2.0 g•cm-3 and 10%, respectively. The C/C-SiC brake composites show excellent tribological performance, including a good stability of brake, the coefficient of friction between 0.57 and 0.67, and the wear rate less than 2.02 cm3•MJ-1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems.


2012 ◽  
Vol 268-270 ◽  
pp. 59-62
Author(s):  
Zhuan Li ◽  
Peng Xiao ◽  
Xiang Xiong

C/C-SiC brake composites, based on reinforcement of carbon fiber and dual matrix of carbon and silicon carbide, were fabricated by warm compacted-in situ reacted process. Rules about the influence of different components on the friction and wear characteristics of the C/C-SiC composites are ascertained. As hard particle, the SiC has the function to the formation of friction film, which is in favor of increasing the coefficient of friction (COF) and decreasing the wear rate. The resin carbon plays the role of enhancing the COF, but they are easy to be cut and increase the wear rate. The graphite plays the lubrication function, and right volume content of graphite is helpful to forming friction film to reduce the wear rate. The C/C-SiC composite fabricated by the warm compacted-in situ reaction can with best tribological performance when the components volume fraction of carbon fibre, SiC, graphite and resin carbon are 15.5%, 37.0%, 22.1% and 20.8%, respectively, which the COF and the wear rate can reach the maximum and the minimun value of 0.44 and 1.1μm/cycle respectively.


2012 ◽  
Vol 585 ◽  
pp. 569-573 ◽  
Author(s):  
S.R. Chauhan ◽  
Sunil Thakur

In this paper the friction and wear characteristics of vinylester and vinylester composites have been investigated under dry sliding conditions for different applied normal load, sliding speed and sliding distance. The experiments have been carried on a pin on disc arrangement at normal room temperature conditions. The influence of friction and wear parameters like normal load, speed, sliding distance and percentage of filler content on the friction and wear rate has been investigated. In this study, a plan of experiments based on the techniques of Taguchi was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) were applied to investigate the influence of process parameters on the coefficient of friction and sliding wear behaviour of these composites. The Taguchi design of experiment approach eliminates the need for repeated experiments and thus saves time, material and cost. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and specific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


Author(s):  
Raj Mohan Radhakrishnan ◽  
Venkatraman Ramamoorthi ◽  
Raghuraman Srinivasan

High strength-to-weight ratio materials are used in the automotive and aerospace industries, and AlSi10Mg is suitable for those applications. The research aims to compare and investigate the wear characteristics of selective laser melted AlSi10Mg pin against two counter bodies, EN-31 hardened steel, and silicon carbide abrasive sheet. The wear rate of additively manufactured AlSi10Mg pin at 0° building orientation was investigated using the box Behnken design approach to identify the suitable wear parameters with the pin on the disc testing facility. Based on analysis of variance, the interaction of load with sliding distance significantly influenced the wear rate of AlSi10Mg in both counter body cases. The adhesion and abrasion wear mechanism were observed in AlSi10Mg with EN-31 and silicon carbide abrasive sheet, respectively. The findings reveal the effect of two counter bodies on the SLMed AlSi10Mg wear phenomenon. Finally, severe wear was observed in the AlSi10Mg pin against the silicon carbide counter body.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2018 ◽  
Vol 55 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Marian Bastiurea ◽  
Dumitru Dima ◽  
Gabriel Andrei

Graphene oxide and graphite filled polyester composites were prepared by using conventional melt-mixing methods in order to improve tribological performance of polyester. It was investigated friction stability, microhardness, friction coefficient, and specific wear rate of the composites in details. It was found that the presence of graphite and graphene oxide influenced friction coefficient and wear rate of the composites. Graphene oxide decreased wear rate with increasing of test speed and graphite decreased wear rate for composite for all speeds. Tribological performance of the polyester/graphene composites is mainly attributed to bigger thermal conductivity for graphene, which can easily dissipate the heat which appears during the friction process at bigger forces. The positive influence of graphite on coefficient of friction (COF) of the composites is the result of the clivage of graphite layers during the loadings due to van der Waals weak bonds between the graphite layers.


2003 ◽  
Vol 125 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Masaya Kurokawa ◽  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Susumu Nagai

Tribological properties of several kinds of polyoxymethylene (POM) composites were evaluated for the purpose of developing a polymeric tribomaterial especially suited for mating with aluminum parts having low surface hardness. POM composites containing small amounts of silicon carbide (SiC), POM/SiC; those containing a small amount of calcium octacosanonoate besides SiC, POM/SiC/Ca-OCA; and the one blended with 24 wt % of polytetrafluoroethylene, POM/PTFE(24); were injection-molded into pin specimens and their tribological properties were tested by means of a pin-on-disk type wear apparatus using an aluminum (A5056) mating disk in comparison with a 303 stainless steel (SUS303) disk. Evaluation was focused on observation of the sliding surfaces of the pin specimens and the mating disks by a scanning electron microscope and an optical microscope together with the measurement of surface roughness. In the case of mating against a SUS303 disk having high surface hardness, all pin specimens did not roughen the disk surfaces even after long time of rubbing. Only POM/PTFE(24) composite obviously made a transfer film on the disk surface, while the other composites made an extremely thin one on it. POM/SiC(0.1)/Ca-OCA(1) composite, containing SiC 0.1 wt. % and Ca-OCA 1 wt. %, was found to show the lowest coefficient of friction and the lowest wear rate forming extremely thin transfer film on the mating disk. On the other hand, against an A5056 disk which has lower surface hardness than that of SUS303 disk, unfilled POM and POM composites except POM/SiC(0.1)/Ca-OCA(1) composite roughened the disk surfaces. However, the sliding surface of the A5056 disk rubbed with POM/SiC(0.1)/Ca-OCA(1) composite was significantly smoother and that of the pin specimen was also quite smooth in comparison with other pin specimens. Further, when each POM composite was rubbed against the A5056 disk, formation of transfer film was not obvious on the disk surfaces. For POM/SiC(0.1)/Ca-OCA(1) composite, the wear rate was the lowest of all POM composites, and the coefficient of friction was as low level as 60 percent of that of unfilled POM, but slightly higher than that of POM/PTFE(24) composite. For POM/SiC(0.1)/Ca-OCA(1) composite, the nucleating effect of SiC and Ca-OCA, which accelerated the crystallization of POM during its injection molding to form a matrix containing fine spherulites, must have resulted in increasing the toughness of the matrix and lowering the wear rate. Also, the lubricant effect of Ca-OCA should have lowered the coefficient of friction of the same matrix for rubbing against aluminum mating disk. POM/SiC(0.1)/Ca-OCA(1) composite was concluded as an excellent tribomaterial for mating with aluminum parts.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 355
Author(s):  
Bo Wu ◽  
Guangze Tang ◽  
Xiaoli Zhao ◽  
Liqin Wang ◽  
Le Gu

High-current pulsed electron beam (HCPEB) irradiation commonly induces crater-like cavities on irradiated surfaces, making them tribologically resemble textured ones. However, the effect of crater-like cavities on the lubricated tribological properties of HCPEB-treated surfaces has not been reported in the literature. This work was aimed at exploring the potential texturing effect of the crater-like cavities. Surfaces with continuous and uniform crater-like cavities were prepared through HCPEB irradiating a 400-nm thick Ta coating that was pre-deposited on polished M50 steel. Their boundary tribological behaviors were studied while sliding in chemically inert, low-viscosity hydrocarbon fuel JP-10 against a Si3N4 ball under 2.0–4.0 GPa. At 2.0 GPa, the coefficient of friction (COF) and wear rate of the polished M50 steel were above 0.16 on average, with large fluctuation, and 1.49 × 10−5 mm3/N·m (a rectangle-like profile of 167.9 μm × 8.1 μm), respectively. In comparison, the HCPEB-treated Ta coating had a stable, marginally fluctuant COF of 0.11 and a near-zero wear rate. Under other higher loads, the HCPEB-treated Ta coating still exhibited a stable COF of 0.11 on average with small fluctuation, and its wear track width was only half that of the M50 steel. The analysis of the wear topographies indicates that the substantial reduction in both the COF and wear rate was mainly due to the texturing effect originating from the crater-like cavities.


Sign in / Sign up

Export Citation Format

Share Document