scholarly journals LncRNA TP53TG1 Promotes the Growth and Migration of Hepatocellular Carcinoma Cells via Activation of ERK Signaling

2021 ◽  
Vol 7 (3) ◽  
pp. 52
Author(s):  
Qingchun Lu ◽  
Qian Guo ◽  
Mingyang Xin ◽  
Casey Lim ◽  
Ana M. Gamero ◽  
...  

Long non-coding RNA (lncRNA) TP53 target 1 (TP53TG1) was discovered as a TP53 target gene. TP53TG1 has been reported as having dual roles by exerting tumor-suppressive and oncogenic activities that vary depending on the cancer type. Yet, the role of TP53TG1 in hepatocellular carcinoma (HCC) is not fully understood. In this study, we performed both gain- and loss-of-function studies to determine the biological role of TP53TG1 in HCC. We found that the knockdown of TP53 in HCC cells caused the upregulation of TP53TG1. Furthermore, we found that the knockdown of TP53TG1 not only suppressed HCC cell proliferation and migration, but also reduced intrinsic ERK signaling. In contrast, the overexpression of TP53TG1 increased ERK activation and enhanced HCC proliferation. In conclusion, our study reveals an oncogenic role of TP53TG1 in HCC, which provides a novel insight into the cell-type-specific function of TP53TG1 in HCC.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Baoyan Fan ◽  
Wanlong Pan ◽  
Xinli Wang ◽  
Michael Chopp ◽  
Zheng Gang Zhang ◽  
...  

Background and Purpose: Adult neurogenesis contributes to functional recovery after stroke. Long non-coding RNAs (lncRNAs) regulate stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. Methods and Results: Using lncRNA array and in situ hybridization, we analyzed lncRNA profiles of adult neural stem cells (NSCs) isolated from the subventricular zone neurogenic region in rats subjected to middle cerebral artery occlusion. We found that H19 was the most highly upregulated lncRNA (19 fold) in ischemic NSCs compared with non-ischemic NSCs. Reduction of endogenous H19 in NSCs by CRISPR-Cas9 genome editing significantly decreased the proliferation and increased the apoptosis of ischemic NSCs, as assayed by the number of BrdU + cells (56±5% vs 22±3%, p<0.01, n=3) and Caspase-3/7 activity compared to NSCs transfected with scrambled small guide RNA (sgRNA). Knockdown of H19 significantly decreased the number of Tuj1 + neuroblasts (8±2% vs 5±0.4%, p<0.01, n=3) and NG 2 + oliogodendrocyte progenitor cells (10±1% vs 5±0.3%, p<0.01, n=3), suggesting that deletion of H19 suppresses the proliferation and survival and blocks the differentiation of NSCs into neurons and oligodendrocytes. Additional RNA-sequencing and bioinformatics analyses revealed that genes deregulated by H19 knockdown were involved in transcription, apoptosis, proliferation, cell cycle and response to hypoxia. Western blot analysis validated that loss-of-function and gain-of-function of H19 significantly increased and reduced, respectively, the transcription of cell cycle-related genes including p27. Using ChIRP assay, we found that upregulated H19 in NSCs was physically associated with EZH2 which catalyzes the repressive H3K27me3 histone marker. Knockdown of H19 significantly reduced the enrichment of H3K27me3 at the promoter of p27, leading to the upregulation of p27 expression and consequently inhibition of NSC proliferation. Conclusions: H19 mediates stroke-induced neurogenesis by regulating genes involved in cell cycle and survival through the interaction with chromatin remodeling proteins. Our data provide novel insights into epigenetic regulation of gene expression by lncRNA in neurogenesis.


2018 ◽  
Vol 315 (6) ◽  
pp. L965-L976 ◽  
Author(s):  
Zhengjiang Qian ◽  
Yanjiao Li ◽  
Haiyang Yang ◽  
Jidong Chen ◽  
Xiang Li ◽  
...  

Platelet-derived growth factor (PDGF) can induce hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which is a key causative factor to the occurrence and progression of pulmonary arterial hypertension (PAH). We previously identified that miR-1181 is significantly downregulated by PDGFBB in human PASMCs. In this work, we further explore the function of miR-1181 and underlying regulatory mechanisms in PDGF-induced PASMCs. First, the expression pattern of miR-1181 was characterized under PDGFBB treatment, and PDGF receptor/PKCβ signaling was found to repress miR-1181 expression. Then, gain- and loss-of-function experiments were respectively conducted and revealed the prominent role of miR-1181 in inhibiting PASMC proliferation and migration. Flow cytometry analysis suggested that miR-1181 regulated the PASMC proliferation through influencing the cell cycle transition from G0/G1 to S phase. Moreover, we exhibited that miR-1181 targeting STAT3 formed a regulatory axis to modulate PASMC proliferation. Finally, serum miR-1181 expression was also observed to be reduced in adult and newborn patients with PAH. Overall, this study provides novel findings that the miR-1181/STAT3 axis mediated PDGFBB-induced dysfunction in human PASMCs, implying a potential use of miR-1181 as a therapeutic and diagnostic candidate for the vascular remodeling diseases.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Chong Lu ◽  
Xiuhua Wang ◽  
Xiangwang Zhao ◽  
Yue Xin ◽  
Chunping Liu

Abstract Breast cancer (BC) poses a great threaten to women health. Numerous evidences suggest the important role of long non-coding RNAs (lncRNAs) in BC development. In the present study, we intended to investigate the role of ARAP1-AS1 in BC progression. First of all, the GEPIA data suggested that ARAP1-AS1 was highly expressed in breast invasive carcinoma (BRAC) tissues compared with the normal breast tissues. Meanwhile, the expression of ARAP1-AS1 was greatly up-regulated in BC cell lines. ARAP1-AS1 knockdown led to repressed proliferation, strengthened apoptosis and blocked migration of BC cells. Moreover, ARAP1-AS1 could boost HDAC2 expression in BC through sponging miR-2110 via a ceRNA mechanism. Of note, the UCSC predicted that HDAC2 was a potential transcriptional regulator of PLIN1, an identified tumor suppressor in BC progression. Moreover, we explained that the repression of HDAC2 on PLIN1 was owing to its deacetylation on PLIN1 promoter. More importantly, depletion of PLIN1 attenuated the mitigation function of ARAP1-AS1 silence on the malignant phenotypes of BC cells. To sum up, ARAP1-AS1 serves a tumor-promoter in BC development through modulating miR-2110/HDAC2/PLIN1 axis, which may help to develop novel effective targets for BC treatment.


2019 ◽  
Author(s):  
rui kong ◽  
Nan Wang ◽  
Wei Han ◽  
Yuejuan Zheng ◽  
Jie Lu

Abstract Background: In recent years, long non-coding RNAs (lncRNAs) are emerging as crucial regulators in the immunological process of liver hepatocellular carcinoma (LIHC). Increasing studies have found that some lncRNAs could be used as a diagnostic or therapeutic target for clinical management, but little research has investigated the role of immune-related lncRNA in tumor prognosis. In this study, we aimed to develop an immune lncRNA signature for the precise diagnosis and prognosis of liver hepatocellular carcinoma. Methods: Gene expression profiles of LIHC samples obtained from TCGA were screened for immune-related genes using two reference gene sets. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate cox analysis. Then the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were carried out to evaluate the capability of immune lncRNA signature as a prognostic indicator. Results: Six long non-coding RNA MSC−AS1, AC009005.1, AL117336.3, AL031985.3, AL365203.2, AC099850.3 were identified via correlation analysis and cox regression analysis considering their interactions with immune genes. Next, tumor samples were separated into two risk groups by the signature with different clinical outcomes. Stratification analysis showed the prognostic ability of this signature acted as an independent factor. The AUC value of ROC curve was 0.779. The Kaplan-Meier method was used in survival analysis and results showed a statistical difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Data from gene set enrichment analysis (GSEA) further unveiled several potential biological processes of these biomarkers may involve in. Conclusion: In summary, the study demonstrated the potential role of the six-lncRNA signature served as an independent prognostic factor for LIHC patients.


2020 ◽  
Vol 168 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Yuepei Zou ◽  
Zhonghua Sun ◽  
Shuangming Sun

Abstract Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.


2020 ◽  
Vol 26 (4) ◽  
pp. 415-428 ◽  
Author(s):  
Meenakshi Gupta ◽  
Kumari Chandan ◽  
Maryam Sarwat

Hepatocellular carcinoma (HCC) accounts for about 80-90% of all liver cancers and is found to be the third most common cause of cancer mortality in the Asia-Pacific region. Risk factors include hepatitis B and C virus, cirrhosis, aflatoxin-contaminated food, alcohol, and diabetes. Surgically removing the tumor tissue seems effective but a high chance of recurrence has led to an urgent need to develop novel molecules for the treatment of HCC. Clinical management with sorafenib is found to be effective but it is only able to prolong survival for a few months. Various side effects like gastrointestinal and abdominal pain, hypertension, and hemorrhage are also associated with sorafenib, which calls for the unmet need of effective therapies against HCC. Similarly, the genetic mechanisms behind the occurrence of HCC are still unknown and need to be expounded further for developing newer candidates. Since unearthing the concept of these variants, transcriptomics has revealed the role of noncoding RNAs (ncRNAs) in many cellular, physiological and pathobiological processes. They are also found to be widely associated and abundantly expressed in a variety of cancer. Aberrant expression and mutations are closely related to tumorigenesis and metastasis and hence are classified as novel biomarkers and therapeutic targets for the treatment of cancer, including HCC. Herein, this review summarises the relationship between ncRNAs and hepatocellular carcinoma.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 883 ◽  
Author(s):  
Santosh K. Singh ◽  
Manoj K. Mishra ◽  
Brian M. Rivers ◽  
Jennifer B. Gordetsky ◽  
Sejong Bae ◽  
...  

Despite the improvement in survival for patients with liver cancer (LCa) in recent decades, only one in five patients survive for 5 years after diagnosis. Thus, there is an urgent need to find new treatment options to improve patient survival. For various cancers, including LCa, the chemokine CCL5 (RANTES) facilitates tumor progression and metastasis. Since the function of the CCR5/CCL5 interaction in LCa cell proliferation and migration is poorly understood, the present study was undertaken to investigate the role of the CCR5/CCL5 axis in these processes. Flow cytometry, RT-PCR, Western blot, and immunofluorescence techniques were used to quantify the expression of CCR5 and CCL5 in LCa cells. To determine the biological significance of CCR5 expressed by LCa cell lines, a tissue microarray of LCas stained for CCR5 and CCL5 was analyzed. The results showed higher expression (p < 0.001) of CCR5 and CCL5 in hepatocellular carcinoma (HCC) tissues compared to non-neoplastic liver tissues. Furthermore, to delineate the role of the CCR5/CCL5 interaction in LCa cell proliferation and migration, various LCa cells were treated with maraviroc, a CCR5 antagonist, in the presence of CCL5. These data demonstrated the biological and clinical significance of the CCR5/CCL5 axis in LCa progression. The targeting of this axis is a promising avenue for the treatment of LCa.


Sign in / Sign up

Export Citation Format

Share Document