THE PROBLEM OF RESISTANCE OF ARTHROPODS TO INSECTICIDAL AND ACARICIDAL DRUGS

Author(s):  
T.V. Gerunov ◽  
◽  
V.I. Dorozhkin ◽  
A.A. Tarasenko ◽  
L.K. Gerunova ◽  
...  

The introduction of intensive technologies in modern agricultural production involves the widespread use of chemicals to protect plants and animals, including insecticides and acaricides. However, the development of arthropods resistance to the used drugs significantly reduces the efficiency of the chemical method of controlling insects and mites. The article describes the basic mechanisms of the development of resistance on which the study of a comprehensive strategy of combating pests and pathogens in plants and animals based on. Multiple resistance in case of revealed resistance of target objects to multiple substances is of particular importance. Necessity for the development of new insecticidal and acaricidal preparations as well as the improvement of the principles of their application to slow down the development of resistance in arthropods is required. In animal husbandry, the problem is compounded by developing parallel resistance of infectious agents to antimicrobial agents. This requires the development of a scientific-based methodology of pharmacological prevention and treatment of infectious and parasitic diseases of animals, as well as chemical protection of plants against pests and diseases.

2020 ◽  
pp. 42-43
Author(s):  
Andrey S. Khishov ◽  
◽  
Galina I. Burlakova ◽  

Aquaculture production is a promising direction for the development of food production. Like traditional types of animal husbandry, it needs effective medicines for veterinary use, which would ensure not only the well-being of farmed aquatic organisms, but also increase the safety of the fish products and non-fish objects of fishing. The development of measures to control epizootic processes in aquatic organisms is impossible without the creation of new immunological preparations. The development and use of immunobiological drugs will reduce the use of antimicrobial agents. The corresponding set of pharmaceutical drugs was transferred from the traditional veterinary medicine, but due to the peculiarities of the biology of aquatic animals, their immunity and the characteristics of specific pathogens, this could not be done with biological products. The short development time in the aquaculture industry poses current challenges in the form of a lack of basic and applied research for relatively poorly understood groups of new pathogens. The immunological processes associated with the development and intensity of the immune response in aquatic organisms require a detailed study. For domestic aquaculture producers, the analysis and dissemination of the experience accumulated by mankind and the application of advanced developments in this area are even more relevant, since Russia is just beginning its path of intensifying aquaculture production. At the same time, it is clear that the prohibition of the use and monitoring of antimicrobial agents in food products and feed requires a change in the approach to the problem and will lead to the creation of new immunobiological drugs. The market for immunobiological preparations for aquaculture is the most promising for development. In the article, the authors provide data on the development and registration of vaccines for aquaculture in Europe, North and South America.


2021 ◽  
Vol 22 (5) ◽  
pp. 2497
Author(s):  
Filippo Prencipe ◽  
Anna Zanfardino ◽  
Michela Di Napoli ◽  
Filomena Rossi ◽  
Stefano D’Errico ◽  
...  

The evolution of antibacterial resistance has arisen as the main downside in fighting bacterial infections pushing researchers to develop novel, more potent and multimodal alternative drugs.Silver and its complexes have long been used as antimicrobial agents in medicine due to the lack of silver resistance and the effectiveness at low concentration as well as to their low toxicities compared to the most commonly used antibiotics. N-Heterocyclic Carbenes (NHCs) have been extensively employed to coordinate transition metals mainly for catalytic chemistry. However, more recently, NHC ligands have been applied as carrier molecules for metals in anticancer applications. In the present study we selected from literature two NHC-carbene based on acridinescaffoldand detailed nonclassicalpyrazole derived mono NHC-Ag neutral and bis NHC-Ag cationic complexes. Their inhibitor effect on bacterial strains Gram-negative and positivewas evaluated. Imidazolium NHC silver complex containing the acridine chromophore showed effectiveness at extremely low MIC values. Although pyrazole NHC silver complexes are less active than the acridine NHC-silver, they represent the first example of this class of compounds with antimicrobial properties. Moreover all complexesare not toxic and they show not significant activity againstmammalian cells (Hek lines) after 4 and 24 h. Based on our experimental evidence, we are confident that this promising class of complexes could represent a valuable starting point for developing candidates for the treatment of bacterial infections, delivering great effectiveness and avoiding the development of resistance mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


Author(s):  
Harish C. Upadhyay

: No doubt antibiotics have saved billions of lives, but lack of novel antibiotics, development of resistance mechanisms in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria hamper the successful treatment of infections. Due to widespread emergence of resistance, even the new families of antimicrobial agents have a short life expectancy. Drugs acting on single target often lead to drug resistance and are associated with various side effects. To overcome this problem either multidrug therapy or single drug acting on multiple targets may be used. The later are called ‘hybrid molecules’ which are formed by clubbing two biologically active pharmacophores together with or without an appropriate linker. In this rapidly evolving era, the development of natural product-based hybrid molecules may be a super-alternative to multidrug therapy to combat drug resistance caused by various bacterial and fungal strains. Coumarins (benzopyran-2-one) are one of the earliest reported plant secondary metabolites having clinically proven diverse range of pharmacological properties. On the other hand, 1,2,3-triazole is a common pharmacophore in many drugs responsible for polar interactions improving the solubility and binding affinity to biomolecular targets. In this review we discuss recent advances in Coumarin-1,2,3-triazole hybrids as potential antibacterial agents aiming to provide a useful platform for the exploration of new leads with broader spectrum, more effectiveness, less toxicity with multiple modes of action for the development of cost-effective and safer drugs in the future.


Author(s):  
Aigul Aldungarovna Aitpaeva

The article focuses on the importance of digitization of agriculture for rising the competitiveness of the domestic agro-industrial complex (AIC). In order to obtain an objective picture of APC nowadays, there have been analyzed the supplies of the staples in the Russian Federation and revealed the problems with producing milk, beef, fruit and vegetables of sheltered ground. It is stated that today Russia is actively implementing import substitution strategies in the sectors of the national economy including the agricultural sector. The main purpose of functioning of the national AIC has been determined as ensuring the parameters of food security for the population of Russia. There are considered the burning issues on achieving food self-sufficiency, the solution of which lies in increasing the competitiveness of the national AIC. The emphasis is placed on the need to transfer agricultural production to the ecological and economic principles of management and the rational distribution of using all types of resources. It has been recommended to assess the soil-climatic and economic potential of the territory in order to identify the priorities of food self-sufficiency for basic types of food in all regions of the country. Formation of the organizational and economic mechanism for creating competitive advantages of AIC helps to develop agricultural production on the innovative basis and to ensure the long-lasting food security at the federal level. The factors increasing AIC competitiveness are: economic soil fertility, usable agricultural areas, optimization of the structure of sown areas, system development of fodder production and animal husbandry, digitization of agriculture, etc. There have been analyzed the problems of insufficient digital prevalence in agriculture; the role of digitalization in achieving the parameters of food security is substantiated. The study results can be used to improve the mechanism of ensuring food security for the population of Russia.


2021 ◽  
Vol 101 (2) ◽  
pp. 52-62
Author(s):  
A.Ye. Yeginbayeva ◽  
◽  
K.T. Saparov ◽  
Z.K. Myrzalieva ◽  
M.A. Aralbekova ◽  
...  

In market conditions, one of the key issues of management is the effective use of available natural resources. In agricultural production, these are the problems of using land resources. An urgent task is the rational use of pasture resources according to the seasons of the year for the management of pasture cattle breeding. The article considers the reflection in geographical names of pasture names and terms used in traditional animal husbandry, which provide important information about the features of the landscape. In addition, the regularities of the use of natural conditions by the ethnic group that inhabited this territory, the spatial distribution of pasture terms characteristic ofa particular landscape are determined.


Author(s):  
Tamika A. Garrick ◽  
Oscar E. Liburd

The world population is expected to exceed 9 billion by 2050 and most of this growth will occur in developing countries. As population increases, more arable lands will be used to construct cities and these activities increase CO2 in the atmosphere and contribute to climate change. Climate assessments have shown rising sea levels and increase in the frequency of droughts in many dry areas. Prolonged droughts can decrease the relative amounts of water available for human consumption and agriculture. In developing countries agriculture contributes to more than 15% of GDP and when crops and livestock are deprived of water they become more susceptible to pests and diseases. As climate change continues to occur there is a need to develop strategies to manage key invasive pest and disease species that threaten agricultural production. Thrips are major agricultural pests with the majority of species in tropical regions. They are cosmopolitan in nature and damage crops when they feed and lay eggs in many parts of the plant. Thrips are also vectors for spreading plant diseases. They disperse quickly into new areas where susceptible hosts exist. This chapter focuses on a few important thrips species that threatens agricultural production in the Americas including Central and South America and the Caribbean. The chapter discusses the ecology and pest management strategies for key invasive thrips species and examines the potential effects of climate change on these troublesome species.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shumyila Nasir ◽  
Muhammad Sufyan Vohra ◽  
Danish Gul ◽  
Umm E Swaiba ◽  
Maira Aleem ◽  
...  

The emergence of multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), the chief etiological agent for a range of refractory infections, has rendered all β-lactams ineffective against it. The treatment process is further complicated with the development of resistance to glycopeptides, primary antibiotics for treatment of MRSA. Antibiotic combination therapy with existing antimicrobial agents may provide an immediate treatment option. Minimum inhibitory concentrations (MICs) of 18 different commercially available antibiotics were determined along with their 90 possible pairwise combinations and 64 triple combinations to filter out 5 best combinations. Time-Kill kinetics of these combinations were then analyzed to find collateral bactericidal combinations which were then tested on other randomly selected MRSA isolates. Among the top 5 combinations including levofloxacin-ceftazidime; amoxicillin/clavulanic acid-tobramycin; amoxicillin/clavulanic acid-cephradine; amoxicillin/clavulanic acid-ofloxacin; and piperacillin/tazobactam-tobramycin, three combinations were found to be collaterally effective. Levofloxacin-ceftazidime acted synergistically in 80% of the tested clinical MRSA isolates. First-line β-lactams of lower generations can be used effectively against MRSA infection when used in combination. Antibiotics other than glycopeptides may still work in combination.


2019 ◽  
Vol 14 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Tooran Nayeri Chegeni ◽  
Mahdi Fakhar

Background: Wolbachia is the most common endosymbiotic bacteria in insectborne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, the use of existing strains of Wolbachia bacteria offers a potential strategy for the control of the population of mosquitoes and other pests and diseases. Methods: We searched ten databases and reviewed published papers regarding the role of Wolbachia as a promising drug target and emerging biological control agents of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), and (US 0345249 A1) were reviewed. Results: Endosymbiotic Wolbachia bacteria, which are inherited from mothers, is transmitted to mosquitoes and interferes with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating the reproduction of its hosts, including the induction of reproductive incompatibility, parthenogenesis, and feminization. The extensive effects of Wolbachia on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent. Conclusion: Wolbachia has opened a new window to design a costly, potent and ecofriendly drug target for effective treatment and elimination of vector-borne parasitic diseases.


Sign in / Sign up

Export Citation Format

Share Document