Mechanized Welding with Metal Cored Wire

2020 ◽  
Vol 1157 ◽  
pp. 113-122
Author(s):  
Andrey A. Golyakevich ◽  
Leonid N. Orlov ◽  
Sergey Yu. Maksimov

Currently, there is a steady upward trend in the consumption of flux-cored wires in the global market of welding consumables. One of the rapidly developing technologies for the manufacture of metal structures is shielded gas arc welding with flux-cored wire with a metal core. According to the technology of use, metal cored wires do not differ from solid wires, and even surpass them in some technological characteristics. Taking into account global trends in the development of mechanized welding and the lack of domestic analogues, LLC TM.VELTEK has developed and mastered the manufacturing of high-performance metal cored wire TMB5-MK for welding in mixtures of 82% Ar + 18% CO2, 90% Ar + 10% CO2. The research aimed to study the features of the process of welding with metal cored wire compared to welding with solid wire. It has been established that metal cored wire provides high stability of arc burning in a wide range of welding modes. When welding at the same conditions in the optimal range, the index of stability of arc burning when using solid wire Sv-08G2S is 3 times lower. At the same time, the TMV5-MK wire provides a reduction in spatter losses, an increase in welding productivity and high mechanical properties of the weld metal. It is shown that the stability of the welding process is significantly affected by the electrodynamic properties of the power source and this factor must be taken into account when evaluating the welding and technological properties of welding wires and developing recommendations for their use.

2019 ◽  
Vol 945 ◽  
pp. 706-711
Author(s):  
A.K. Kychkin ◽  
G.G. Vinokurov ◽  
N.F. Struchkov

Multiple use of pan concentrate from placer deposits directly in technical process without prealltoment of pure components could become one of promising directions in the field of receiving wide range of multicomponent metal and ceramic powdered materials. In this paper as the object of comparative examination, we present the hemimethylated plating made of exploited experimentative flux cored wires based on industrial Ni-Cr-B-Si system powder modified with rare-earth elements of concentrated complex from Tomtor mineral assets Republic of Sakha (Yakutia). The structure of received plating is heterogeneous and has oxidation coating as boundaries. According to the data of the phase shift analysis plating predominantly consist of Fe-Ni austenitic alloy phases with the Cr, Si carbide and Cr boride precipitation strengthening, plating generally consist of Al2O3, Cr2O3 и Fe2O3 oxide. The research of the plating ultimate composition testifies the equable allocation of main and alloying elements, local location of some elements in the structure of the plating. Microhardness of flux cored wire plating substantially depends on composition and fabricated structure. It has been established that the introduction of rare earth elements provided the formation of strengthening phase with the high hardness of plating resulting in wear resistance increase.


2013 ◽  
Vol 814 ◽  
pp. 76-81
Author(s):  
Dănuţ Mihailescu ◽  
Octavian Frincu ◽  
Marius Corneliu Gheonea

Use of cored wire - shielding gas (gas mixture) pair, during mechanized MAG welding, causes the microparticles formation which is harmful for the welder’s health. The paper presents the experimental method for determining the concentration of the microparticles generated during MAG welding when rutile cored wires (standard and low fume emission) and metal powder cored wires (standard and low fume emission) are used. Carbon dioxide and the shielding gas mixture are investigated, too. Four types of cored wires were comparatively analysed, when three wire speed values were applied. The research of the microparticles concentration was conducted after each welding bead deposition, at the upper part of the welding enclosure, using MicroDust Pro particulate monitor. After each weld bead was deposited, the metal frame of the welding enclosure was removed, and, the fumes and gases, produced during the welding process, were eliminated through two fans, positioned inside and outside of the equipment. Using rutile cored wire with low fume emission, a decrease of microparticles concentration up to 30% is noticed in comparison with standard rutile cored wire. Using metal powders cored wire with low fume emission, the microparticles concentration is diminished with 12.5% comparing with standard metal powders cored wire.


2018 ◽  
Vol 43 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Frank Schreiber ◽  
Benedikt Allebrodt ◽  
Tim Erpel

The protection of machinery and structural components by thermal coatings is of huge economic importance. Each hour of downtime, caused by deficient coatings as a result of wear and corrosion, costs a fortune. Savings by reducing these downtime hours can be achieved by applying optimized functional coatings which show enhanced properties. The main welding processes for applying coatings are GMAW or OA, PTA or Laser, each with their pros and cons. The PTA process can be seen as the intermediate process bridging the low cost, high deposition rate and the expensive but high end Laser. Recently, the PTA and especially the laser process are gaining more attention and market shares. Nowadays the flux-cored wires can be upgraded more and more with for instance complex carbides and achieve coatings similar to the high performance coatings obtained by PTA and Laser welding but at much lower costs. The common problems accompanying the GMAW process: a large heat affected zone and dilution, can be circumvented by using the cold metal transfer (CMT), the AC-GMAW- and the GMAW hot wire process, allowing the flux-cored wires to fully deploy their large potential and compete with the welding techniques. The current paper will describe the modern GMAW hot wire process and then deal with innovative materials and process concepts for the high performance flux-cored wire to give a competitive alternative for the PTA process and expensive laser.


2021 ◽  
Vol 21 (1) ◽  
pp. 77-89
Author(s):  
S. Parshin ◽  
A. Levchenko ◽  
P. Wang ◽  
A. Maystro

Abstract The paper presents research in the field of underwater wet cutting with the use of flux-cored wires in order to improve the quality and performance. The research has resulted into the development of gas and slag systems for flux-cored wires and determination of, optimal parameters for cutting stability and quality. The underwater wet cutting mechanism is a cyclical process with the formation of periodic keyholes in metal, and it consists of operating and idle cycles. Efficiency of the cutting process can be determined by analyzing cycle times, welding current, voltage, power and a number of short circuits. To assess the stability and efficiency of the underwater wet cutting process, the authors have developed the method for analyzing oscillograms to calculate the probability density of current, voltage and power. To determine the quality of cutting, the authors have provided a criterion based on the ratio of the voltage probability density in the idle and operating cycles.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040056
Author(s):  
Jia Chen ◽  
Guoqing Gou ◽  
Zhongyin Zhu ◽  
Wei Gao

A newly self-protecting flux-cored wire was used for simulated U75V rail repairing and five welding process parameters were applied. The influence of welding parameter on the hardness and microstructure of the wire and solder layers was investigated. The single-pass welding process with different preheating parameters and post-treatment parameters were also taken into research. The results showed that the welding process parameters have a significant influence on the weld quality, and mismatched parameters will increase the welding defects. The number of welding layers has a great influence on the hardness and structure. Increasing preheating temperature and a post-heat treatment at a high-temperature can enhance the hardening effect.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


Sign in / Sign up

Export Citation Format

Share Document