Biocompatibility of Polyhydroxyalkanoates Synthesized by Bacillus cereus BMH

2012 ◽  
Vol 531 ◽  
pp. 423-427 ◽  
Author(s):  
Ming Hong Bian ◽  
Wen Feng Hu ◽  
Xu Pang ◽  
Yong Zuo

Polyhydroxyalkanoates (PHAs) are biological polyesters synthesized by many bacteria. The polyesters became the focus of research because of their biodegradability, biocompatibility and the similar physical and chemical properties to those of petroleum derived plastics. A gram-positive strain was isolated from domesticated activated sludge and identified as Bacillus cereus BMH. B. cereus BMH can synthesize PHAs using a wide range of carbon sources. After 36h cultivation in shaken flasks, cell dry-weight was 5.31g/l, PHAs content was 61.2% of cell dry weight which is higher than some other B. cereus reported. The PHAs films showed irregular porous structure under scanning electron microscopy. Biocompatibility of the polyester was evaluated in detail in this article. The polymer was proved of good biocompatibility through Scanning Electron Microscopy (SEM), Fluorescence microscopy observation and CCK-8 assay. It was indicated that the biological polymer had desirable material properties as tissue engineering biomaterials


2014 ◽  
Vol 32 (2) ◽  
pp. 129 ◽  
Author(s):  
Umi Hidayati ◽  
Iswandi Anas Chaniago ◽  
Abdul Munif ◽  
Siswanto Siswanto ◽  
Dwi Andreas Santosa

Bakteri endofit adalah bakteri yang hidup dalam jaringan tanaman, dapat diisolasi melalui sterilisasi permukaan jaringan tanaman. Isolasi bakteri endofit dari tanaman karet yang berpotensi sebagai pemacu pertumbuhan sangat penting dilakukan. Pembuatan kultur campuran dari bakteri endofit diharapkan meningkatkan potensi dalam memacu pertumbuhan yang dapat meningkatkan kualitas bibit batang bawah tanaman karet. Penelitian ini dilakukan dengan tujuan mendapatkan kultur campuran bakteri endofit sebagai pemacu pertumbuhan bibit tanaman karet. Lima bakteri endofit dari tanaman karet yang berpotensi sebagai pemacu pertumbuhan yaitu Bacillus cereus KPD6, Pseudomonas aeruginosa KPA32, Brachybacterium paraconglomeratum LPD74, bacterium (bakteri tidak dikenal) LPD76, dan Providencia vermicola KPA38, diuji kompatibilitas untuk mendapatkan kultur campuran yang dapat meningkatkan pertumbuhan bibit batang bawah PB 260. Semua bakteri endofit terpilih kompatibel satu dengan yang lain. Aplikasi kultur campuran untuk meningkatkan pertumbuhan bibit batang bawah PB 260 memberikan hasil 2 kultur campuran terbaik. Kultur campuran 1 terdiri 2 spesies bakteri yaitu Brachybacterium paraconglomeratum LPD74 dan Providencia vermicola KPA38.  Kultur campuran 2 terdiri 3 spesies bakteri yaitu  Bacillus cereus KPD6, Pseudomonas aeruginosa KPA32, dan Brachybacterium paraconglomeratum LPD74. Bakteri endofit mampu masuk ke planlet bibit karet microcutting yang dibuktikan dengan Scanning Electron Microscopy. Diterima : 19 Mei 2014; Direvisi : 30 Mei 2014; Disetujui : 21 Juni 2014  How to Cite : Hidayati, U., Chaniago, I. A., Munif, A., Siswanto., & Santosa, D. A. (2014). Potensi kultur campuran bakteri endofit sebagai pemacu pertumbuhan bibit tanaman karet. Jurnal Penelitian Karet, 32(2), 129-138. Retrieved from http://ejournal.puslitkaret.co.id/index.php/jpk/article/view/159



2003 ◽  
Vol 767 ◽  
Author(s):  
A. K. Sikder ◽  
S. Thagella ◽  
P. B. Zantye ◽  
Ashok Kumar

AbstractLower mechanical strength, reduced cohesive strength and lack of compatibility with other interconnect materials, are the major challenges involved in chemical mechanical polishing (CMP) of Cu metallization with ultra low-k materials as interlayer dielectrics. In this study we have investigated the polishing behavior of patterned Cu samples with underneath different low-k materials using two different slurries and a wide range of machine parameters. CMP micro tribometer was used to polish the samples with different rotations of platen (50 to 250 RPM) and down forces (1-6 PSI). Friction co-efficient and wear behavior were also investigated at different conditions. Optical and scanning electron microscopy was used to investigate the polished surface. It was observed that the two different Cu slurries used for polishing have marked effects on the polishing of Cu-low-k stack with respect to wear and delamination.



2018 ◽  
Vol 773 ◽  
pp. 287-291
Author(s):  
Eui Soo Kim

High-pressure gas containers must be able to withstand high internal pressures because they store compressed gases. Otherwise, cracks or defects may lead to an explosion, which may in turn lead to a large-scale disaster. Therefore, accurate analysis of the causes of cracks or defects and various techniques for detecting cracks or defects are needed. In this research, we analyzed the failure mechanism of a high-pressure gas container through fractography using scanning electron microscopy and optical microscopy and through measurements of their mechanical and chemical properties.



Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid Salem Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The applications of aluminum and its alloys are still limited by low hardness and low wear resistance properties. Surface modifications, such anodizing and plasma electrolytic oxidation, represent a feasible way to overcome these drawbacks. In this study, discs of AA6082 were subjected to the so-called G.H.A. hard anodizing process leading to an anodized layer having a honeycomb-like structure. Samples having alumina layer thicknesses of 10, 50 and 100 μm were subjected to unidirectional dry sliding wear tests, using bearing steel and silicon nitride as counterbody materials. Surface and structure characterization of the samples were performed before and after the tribological tests, using a wide range of techniques; atomic force microscopy and scanning electron microscopy techniques were used before the wear tests. The wear scars were characterized by scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy techniques. Results show that the different thickness of the anodized layer does not affect the pores dimensions but has an influence on the micrometric domains in which the pores are divided. These features coupled with the wear test conditions, show to have a strong influence on the wear behavior. The thinnest sample showed also the best performance against the ceramic counterbody.



2013 ◽  
Vol 543 ◽  
pp. 72-75
Author(s):  
Balakrishnan Karthikeyan ◽  
Marimuthu Murugavelu

The emergence of nanoparticles (NPs) has opened new opportunities in analytical chemistry [. These NPs exhibit different properties and functionalities when compared to monometallic particles. In particular, they show enhanced selectivity and reactivity when used as catalysts and sensors [2-. The NPs have large surface area, high surface free energy, good biocompatibility and suitability, and it has been used in constructing electrochemical biosensors [7, . The fascinating physical and chemical properties of NPs offer excellent prospects for a wide range of bio sensing applications [ . Uric acid (UA) is the principal final product of purine metabolism in the human body [1. It has been shown that extreme abnormalities of UA levels are symptoms of several diseases (e.g. gout, hyper uricaemia and LeschNyhan syndrome)[11,1.In general, electro active UA can be irreversibly oxidized in aqueous solution and the major product is allantoin [1. In continuation of our interest with the bimetal nanoparticle (BNP) sensing here in this study, we employed Ag/Pt BNPs for detecting of UA.



2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.



1992 ◽  
Vol 268 ◽  
Author(s):  
Wei Chen ◽  
P. Chen ◽  
R. Viswanathan ◽  
A. Madhukar ◽  
Jun Chen ◽  
...  

ABSTRACTGa droplet formation on GaAs(100) substrates milled by focused Ga ion beam is studied using scanning electron microscopy and scanning Auger microscopy. It is found that Ga droplet formation requires a threshold Ga+ dose of ∽ 1016/cm 2 and is closely correlated to the formation of Ga overlayer at the milled surface and the increase in Ga concentration by ∽ 32% in the subsurface region. The Ga droplet evolution appears to be driven by the instantaneous energy deposited continuously by the ions.



2019 ◽  
Vol 20 (2) ◽  
pp. 522-534
Author(s):  
T. Balinyan ◽  
L. Derecha ◽  
Yu. Nosatenko

The article considers the need for a comprehensive study of biological damage to fibrous materials by scanning electron microscopy. The main types and characteristics of fibers and fibrous materials, their types of damage, in particular, biological, and the mechanism of their formation are described. It is shown that with modern methods for studying morphological characteristics, the most effective is the method of scanning electron microscopy, which makes it possible to directly study the object in a wide range of magnifications. The use of scanning electron microscopy makes it possible to identify qualitatively new volumetric microsigns when conducting studies of fibrous materials. Biological damage agents (biofactors) are considered — microbiological (bacteria, microbes, fungi, blue-green algae), phytological (mosses, lichens, higher plants, algae), zoological (insects, birds, mammals). Attention is focused on the study of injuries caused by mold caused by moths, dogs, etc. Conducting a comprehensive study of various types of damage to materials of various fibrous nature allows us to obtain an information database, the possibility of differentiating chemical, mechanical, thermal and biological damage, identifying microsigns that individualize one or another object (factor) of action, influence, increasing the potential for obtaining trace information about the actual data and circumstances of the event in those cases when only by external morphological features of the diagnosis It is not possible to repair damage. The data obtained indicate the effectiveness of the chosen research area. The results of the studies are positive for creating the optimal research scheme, methods of microscopic studies of damage to materials of fibrous nature in order to solve diagnostic, identification and situational tasks of forensic examination.



Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1466
Author(s):  
Carmen Steluta Ciobanu ◽  
Daniela Predoi ◽  
Patrick Chapon ◽  
Mihai Valentin Predoi ◽  
Simona Liliana Iconaru

Samarium doped hydroxyapatite (Ca10−xSmx(PO4)6(OH)2, xSm = 0.5, 50SmHAp) is a very promising candidate to be used for different coatings in various dental and orthopedic implants. We report, for the first time, the obtaining of 50SmHAp thin films by a cost-effective method, namely spin coating. Thin films of 50SmHAp on silicon substrate have been analyzed by various techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), Metallographic microscopy and Glow Discharge Optical Emission Spectroscopy (GDOES). The stability of 50SmHAp suspension was evaluated by ultrasound measurements. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were also used to evaluate the 50SmHAp suspension. The antifungal activity of 50SmHAp suspension and coatings was assessed using Candida albicans ATCC 10231 fungal strain (C. albicans). The results of the antifungal assays depicted that both 50SmHAp suspensions and coatings were effective in inhibiting the development of C. albicans fungal cells, thus making them ideal candidates for the development of novel antifungal agents. The obtained results give new perspective for possible applications of 50SmHAp thin films in various medical applications due to their antifungal properties.



Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 535 ◽  
Author(s):  
Min Tang ◽  
Yi-Liang Li

In this study, the crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia were surveyed using scanning electron microscopy. Pyrite crystals occur either as single euhedral crystals or aggregates with a wide range of crystal sizes and morphological features. Single euhedral crystals, with their sizes ranging from ~200 nm to ~40 µm, exhibit combinations of cubic {100}, octahedral {111}, and pyritohedral {210} and {310} forms. Heterogeneous geochemical microenvironments and the bacterial activities in the long-lived hot springs have mediated the development and good preservation of the complex pyrite crystal habits: irregular, spherulitic, cubic, or octahedral crystals congregating with clay minerals, and nanocrystals attaching to the surface of larger pyrite crystals and other minerals. Spherulitic pyrite crystals are commonly covered by organic matter-rich thin films. The coexistence of various sizes and morphological features of those pyrite crystals indicates the results of secular interactions between the continuous supply of energy and nutritional elements by the hot springs and the microbial communities. We suggest that, instead of a single mineral with unique crystal habits, the continuous deposition of the same mineral with a complex set of crystal habits results from the ever-changing physicochemical conditions with contributions from microbial mediation.



Sign in / Sign up

Export Citation Format

Share Document